Astronomy, Cosmology, and Fundamental Physics with

Einstein Telescope

Chris Van Den Broeck

GWPAW, Hannover, June 2012

Overview

- What is Einstein Telescope?
- Astrophysics:
 - Reconstructing the evolution of inspiral rates
 - Making a census of neutron star and black hole masses
 - Neutron star equation of state
- Cosmology:
 - Inspiral events as "standard sirens"
 - Primordial gravitational waves
- Fundamental physics
 - Probing the genuinely strong-field dynamics of gravity

Einstein Telescope: Conceptual design

- Conceptual design study funded by EU, recently concluded
- 3rd generation observatory
 - Multiple interferometers, 10 km arm length, arranged in triangular configuration
 - Underground
 - Assuming technologies one should be able to achieve in 10-15 years
- 10³-10⁶ binary coalescence detections per year

Einstein Telescope: Distance reach

Reconstructing the evolution of inspiral rates

Making a census of neutron star and black hole masses

Do intermediate mass black holes exist?

- Stellar mass black holes: 3 30 M_{sun}
- Supermassive black holes: 10⁶ 10¹⁰ M_{sun}
- Intermediate? (Formed in globular clusters?)

Neutron star equation of state

[Hinderer et al., arXiv:0911.3535]

Many possible equations of state (EOS)

Extremes:

"Soft" EOS: prompt collapse to a black hole

"Hard" EOS: unstable bar mode, eventually BH

- Advanced LIGO/Virgo, combining information from ~15 events: Will be able to tell difference between extremes
- ET: detailed measurement of the EOS

Cosmology with binary inspirals

- Standard candle in cosmology: Source for which intrinsic luminosity approximately known; can be used to measure distance
- If redshift also known, exploit distance-redshift relationship d_L(z) = d_L(H₀, Ω_M, Ω_Λ, Ω_k, w; z) to probe dynamics and contents of the Universe, where
 - H₀ Hubble constant
 - $\Omega_{_{\rm M}}$ density of matter
 - Ω_{Λ} density of dark energy
 - Ω_{k} effect of spatial curvature
 - $w = p_{DE}^{\prime}/\rho_{DE}^{\prime}$ EOS of dark matter
- Currently: mainly Type la supernovae
- Problem: need for calibration using closer-by sources
 - \rightarrow "Cosmic distance ladder"

Cosmology with binary inspirals

- Binary neutron stars and black holes are standard sirens (Schutz '86):
 - Distance can be inferred from the gravitational wave signal itself, if (some) information about sky position, orientation
 - No need for a cosmic distance ladder!
 - Systematics will be known
- Need to extract redshift:
 - Use electromagnetic counterparts, e.g. gamma ray bursts [Nissanke et al., arXiv:0904.1017]
 - Assuming a mass distribution [Taylor, Gair, Mandel, arXiv:1108.5161]
 - Use galaxy clustering: no need for counterparts! [Del Pozzo, arXiv:1108.1317]
 - If EOS already determined, get redshift from the GW waveform through effect of tidal deformations on orbital motion [Messenger & Read, arXiv:1107.5725]

Cosmology with binary inspirals

 $\Omega_{M} = 0.260$ $\sigma_{\Omega_{M}} = 0.035$ $0.2 \quad 0.3 \quad 0.4$ $\Omega_{\Lambda} = 0.026$ $\sigma_{\Omega_{\Lambda}} = 0.026$ $\sigma_{\Omega_{\Lambda}} = 0.026$

[Sathyaprakash, Schutz, CVDB, arXiv:0904.4151]

$$\begin{split} & w = p_{_{DE}} / \rho_{_{DE}} & \text{EOS of dark matter} \\ & \textbf{Could be time dependent:} \\ & w(a) \simeq w_{_0} + w_{_a}(1 - a) + \ldots \end{split}$$

Comparable accuracies to conventional measurements, but completely independent systematics (no cosmic distance ladder!)

[Zhao, CVDB, Baskaran, Li, arXiv:1009.0206]

 Inflation: Period of exponential growth of Universe (first ~10⁻³² secs)

- Inflation: Period of exponential growth of Universe (first ~10⁻³² secs)
- Phase transitions

- Inflation: Period of exponential growth of Universe (first ~10⁻³² secs)
- Phase transitions
- Cosmic strings: Topological defects, or fundamental (super)strings

- Inflation: Period of exponential growth of Universe (first ~10⁻³² secs)
- Phase transitions
- Cosmic strings: Topological defects, or fundamental (super)strings
 - Predictions from quantum gravity theories:
 - Pre-Big-Bang cosmology
 - Brane world scenarios
 - "Bounce" cosmologies

Cosmic strings

 Existing LIGO data already give best upper limits on properties of cosmic string networks!

Pre-Big-Bang cosmology

 "Pre-Big-Bang scenario" inspired by string theory: Advanced LIGO/Virgo will put stronger bounds than any other method ... or find primordial gravitational GW!

[Abbot et al., Nature 460, 990 (2009)]

Early Universe cosmology

- Hulse-Taylor and similar binary pulsars only constrain dissipation at quadrupole level
- Most interesting dynamical effects occur starting at (v/c)³ beyond leading order!
 - "Tail effects"
 - Spin-orbit interaction

10.

2

-2

- Hulse-Taylor and similar binary pulsars only constrain dissipation at quadrupole level
- Most interesting dynamical effects occur starting at (v/c)³ beyond leading order!
 - "Tail effects"
 - Spin-orbit interaction
 - •
- Exploit rich dynamics at late stages of inspiral, and merger/ringdown
- Can only be done with direct detection of gravitational waves

- Generic test of strong-field dynamics by checking consistency of coefficients in the phase with GR prediction [Mishra et al., arXiv:1005.0304]
- Similar tests using ringdown
 [Karametsos et al., arXiv:1107.0854]
 [Gossan et al., arXiv:1111.5819]
 - Bayesian model selection framework has been developed to perform such tests in a systematic way [Li et al., arXiv:1110.0530, 1111.5274]
 - Construct odds ratio for violation of GR versus GR
 - Combine information from all observed sources
 - 2nd generation, 15 sources: Few % resolution in low order coefficients [See talk by Tjonnie Li]

- Generic test of strong-field dynamics by checking consistency of coefficients in the phase with GR prediction [Mishra et al., arXiv:1005.0304]
- Similar tests using ringdown
 [Karametsos et al., arXiv:1107.0854]
 [Gossan et al., arXiv:1111.5819]
 - Bayesian model selection framework has been developed to perform such tests in a systematic way [Li et al., arXiv:1110.0530, 1111.5274]
 - Construct odds ratio for violation of GR versus GR
 - Combine information from all observed sources
 - 2nd generation, 15 sources: Few % resolution in low order coefficients [See talk by Tjonnie Li]
 - ET: $\gg 10^3$ sources/yr!

Summary

- Astrophysics:
 - Reconstructing almost the entire evolution of inspiral rates
 - Making a complete census of neutron star and black hole masses
 - In-depth access to neutron star equation of state
- Cosmology:
 - Inspiral events as "standard sirens" for independent cosmography
 - Contents of the Universe
 - Nature of dark energy?
 - Primordial gravitational waves
 - Inflation (10⁻³² secs after Big Bang)
 - Phase transitions: new physics?
 - Cosmic (super)strings
 - Direct access to quantum gravity effects?
- Probing the strong-field dynamics of classical gravity through BBH