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Overview

= What is Einstein Telescope?
= Astrophysics:
« Reconstructing the evolution of inspiral rates
 Making a census of neutron star and black hole masses
* Neutron star equation of state
= Cosmology:
e |nspiral events as "standard sirens"
* Primordial gravitational waves

= Fundamental physics

* Probing the genuinely strong-field dynamics of gravity
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Einstein Telescope: Conceptual design

ET-D

Conceptual design study
funded by EU, recently
concluded

3rd generation observatory

* Multiple interferometers,
10 km arm length,
arranged in triangular
configuration

 Underground

 Assuming technologies
one should be able to
achieve in 10-15 years

10°-10°binary coalescence
detections per year




Einstein Telescope: Distance reach
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Reconstructing the evolution of inspiral rates
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¢ Making a census of neutron star and black hole masses
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Do intermediate mass black holes exist?

Stellar mass black holes: 3 - 30 MSu

n

Supermassive black holes: 10°- 10"°M

sun

Intermediate? (Formed in globular clusters?)

Noise and Signal
Amplitude Spectra (Hz /%)
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Neutron star equation of state

Many possible equations of state (EOS)

npeu matter only
| Extremes:

« "Soft" EOS: prompt collapse to a black hole
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 "Hard" EOS: unstable bar mode, eventually BH

A Wm s

ﬁ [Hinderer et al., arXiv:0911.3535]
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= Advanced LIGO/Virgo, combining information from ~15 events:
Will be able to tell difference between extremes

= ET: detailed measurement of the EOS




Cosmology with binary inspirals

= Standard candle in cosmology:
Source for which intrinsic luminosity approximately known; can be used to
measure distance

= |f redshift also known, exploit distance-redshift relationship
d(z)=d(MH,Q, Q. Q,w;z)
to probe dynamics and contents of the Universe, where

. H0 Hubble constant

Q, density of matter
- Q  density of dark energy

- Q effect of spatial curvature

w=p_/p,. EOS of dark matter

= Currently: mainly Type la supernovae

= Problem: need for calibration using closer-by sources

— "Cosmic distance ladder"




Cosmology with binary inspirals
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= Binary neutron stars and black holes are
standard sirens (Schutz '86):

Distance can be inferred from the
gravitational wave signal itself, if (some)
information about sky position, orientation

No need for a cosmic distance ladder!

Systematics will be known

= Need to extract redshift:

Use electromagnetic counterparts, e.g. gamma

ray bursts
[Nissanke et al., arXiv:0904.1017]

Assuming a mass distribution
[Taylor, Gair, Mandel, arXiv:1108.5161]

Use galaxy clustering: no need for counterparts!
[Del Pozzo, arXiv:1108.1317]

If EOS already determined, get redshift from the
GW waveform through effect of tidal

deformations on orbital motion
[Messenger & Read, arXiv:1107.5725]




Cosmology with binary inspirals
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[Sathyaprakash, Schutz, CVDB, arXiv:0904.4151]
w=p_/p,. EOS of dark matter

Could be time dependent:
w(@) = w t+w (1-a)+..

041 — GW+CMB

— SNIa+CMB

Comparable accuracies to conventional
measurements, but completely
independent systematics

(no cosmic distance ladder!)
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Primordial gravitational waves

TrSAR  Inflation:
Period of exponential growth of
Universe (first ~10 secs)

THE ENTIRE
OBSERVABLE
UNIVERSE!




Primordial gravitational waves

RSN  Inflation:
Period of exponential growth of
Universe (first ~10 secs)

» Phase transitions




e [nflation:
Period of exponential growth of

Universe (first ~10 secs)
 Phase transitions

e Cosmic strings:
Topological defects, or
fundamental (super)strings




Primordial gravitational waves

TrSAR  Inflation:
Period of exponential growth of
Universe (first ~10 secs)

 Phase transitions

e Cosmic strings:
Topological defects, or
fundamental (super)strings

* Predictions from quantum
gravity theories:

- Pre-Big-Bang cosmology
- Brane world scenarios
- "Bounce" cosmologies




Cosmic strings

= Existing LIGO data already give
best upper limits on properties of
cosmic string networks!

[Abbot et al., Nature 460, 990 (2009)]
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Pre-Big-Bang cosmology
= "Pre-Big-Bang scenario” inspired by

string theory:
Advanced LIGO/Virgo will put stronger

bounds than any other method
... or find primordial gravitational

prezent ime
GW!

POSTEIG BANG

Cirvatre scale

sting perhurbative
VACLIITL

FREBIG BANG
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[Abbot et al., Nature 460, 990 (2009)]
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Early Universe cosmology

Cosmological energy density in GW, ng(f)
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Testing the strong-field dynamics of gravity

= Hulse-Taylor and similar binary
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Testing the strong-field dynamics of gravity

= Hulse-Taylor and similar binary
pulsars only constrain
dissipation at quadrupole level

= Most interesting dynamical
effects occur starting at (v/c)’
beyond leading order!

« "Tail effects”

e Spin-orbit interaction

= Exploit rich dynamics at late
stages of inspiral, and
merger/ringdown

.."""'“""m-., Mt L, i "| |'!|.||!
AR S |||II |1| L“ = Can only be done with direct

detection of gravitational waves
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Testing the strong-field dynamics of gravity
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= Generic test of strong-field dynamics by
checking consistency of coefficients in
the phase with GR prediction

[Mishra et al., arXiv:1005.0304]

= Similar tests using ringdown

[Karametsos et al., arXiv:1107.0854]
[Gossan et al., arXiv:1111.5819]

= Bayesian model selection framework
has been developed to perform such
tests in a systematic way

[Li et al., arXiv:1110.0530, 1111.5274]

Construct odds ratio for
violation of GR versus GR

Combine information from all
observed sources

2nd generation, 15 sources:
Few % resolution in low order
coefficients

[See talk by Tjonnie Li]



Testing the strong-field dynamics of gravity
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= Generic test of strong-field dynamics by
checking consistency of coefficients in
the phase with GR prediction
[Mishra et al., arXiv:1005.0304]

= Similar tests using ringdown
[Karametsos et al., arXiv:1107.0854]
[Gossan et al., arXiv:1111.5819]

= Bayesian model selection framework
has been developed to perform such
tests in a systematic way
[Li et al., arXiv:1110.0530, 1111.5274]

 Construct odds ratio for
violation of GR versus GR

e Combine information from all
observed sources

* 2nd generation, 15 sources:
Few % resolution in low order
coefficients
[See talk by Tjonnie Li]

« ET: >10°sources/yr!



Summary

= Astrophysics:
* Reconstructing almost the entire evolution of inspiral rates
 Making a complete census of neutron star and black hole masses
* In-depth access to neutron star equation of state

= Cosmology:

* Inspiral events as "standard sirens" for independent cosmography

- Contents of the Universe
- Nature of dark energy?
« Primordial gravitational waves

Inflation (10 secs after Big Bang)
- Phase transitions: new physics?
- Cosmic (super)strings

- Direct access to quantum gravity effects?
= Probing the strong-field dynamics of classical gravity through BBH
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