LIGO-G-1200500

LIGO

Improving Gravitational Wave Searches by Using
Multivariate Classifiers to Incorporate Auxiliary
Channel Information

Rahul Biswas’, Lindy Blackburn?, Junwei Cao®, Reed Essick!, Kari Hodge*, Andrew
Lundgren?, Erik Katsavounidis!, Young-Min Kim>3, Chan-Hwan Lee>, John J. Oh3, Sang Hoon

Oh3, Ye Tao®, Ruslan Vaulin?, Xiaoge Wang?®
IMassachusetts Institute of Technology, 2NASA Goddard Space Flight Center, 3National Institute for Mathematical Sciences, “California
Institute of Technology, >Pusan National University, 6Tsinghua University, “University of Texas at Brownsville, 8AEl Hanover



Laser Interferometer Gravitational-Wave Observatory (LIGO)

photodetector

gravitational

wave .
channel "g|ItCh;




The detectors have hundreds of such auxiliary channels
monitoring the instrument and its environment

In practice, a multitude of them witness
“something” and the cause of the glitch is not clear
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Auxiliary Channels

e Environmental:
— seismometers
— microphones

— magnetometers

 |nstrumental:

— beam splitter motion

— mirrors’ angular alignment

— common arm



Problem:

Glitches increase false alarm rates, obscuring detections and raising upper limit:s
So we’d like to be able to either:

- veto these times prior to analysis
(historical method, based on at most a few channels per veto)

- re-rank events based on the result of auxiliary channel analysis
(difficult analytically because of the sizable number of channels)




|deal Solution:

Combine information from these auxiliary channels into a Multivariate Classifier
(MVC) with existing search algorithms, let it determine how likely it was that
what was seen in the GW channel was a glitch of environmental/instrumental
origin as opposed to an actual gravitational wave

Help pinpoint the

cause of glitches,

allowing potential
mitigation




So Far:

Completed half of this — separating generic artifacts from “clean” times.
Future work will couple this to specific searches.

Can pinpoint the
cause of some
glitches




Multivariate Classifiers (MVCs)

* Artificial Neural Networks (ANN)

— multilayer network using back-
propagation algorithm iRPROP from the
FANN library

 Random Forests of Bagged Decision
Trees (“Forest”)
— StatPatternRecognition library

* Support Vector Machines (SVM)

— LibSVM package is used to transform
non-linearly separable parameters into a
higher-dimensional space where they
might be linearly separable




Input to the MVCs

 classifiers are constructed with a training set —
events with known class

* IMPORTANT: the training set must be unbiased

— can’t contain any information from the gravitational
wave channel

— glitch set shouldn’t contain gravitational waves




Input to the MVCs

* Training set:
— Class 1: the glitches (what we are looking for)

* identified by a Kleine-Welle trigger in the gravitational-wave
channel above a nominal threshold

— Class 0: “clean” times
e atleast 100 ms away from a Class 1 sample

Kleine-Welle captures excess
power in the time-frequency plane
via wavelet analysis
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figure: generic spectrogram

Each event is parameterized by 5 numbers per auxiliary channel.
These numbers are extracted from the auxiliary channels with

the same Kleine-Welle wavelet analysis.
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Output of the MVCs

Once the MVC is
trained, you can feed it
an event and it will spit
out a number between
O and 1, where 1
indicates it is more
glitch-like.

By picking a threshold
on this continuous
rank, one can veto any
GPS time where the
rank exceeds this
threshold
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Fraction of Glitches
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Fig. 5: Histogram for Glitches Based on Forest_rank

FAP = 0.01

Forest_rank = 0.1203
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fraction of glitches vetoed
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ROC Curves

False Alarm Probability = fraction of clean samples vetoed
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Number of Glitches
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Detector Characterization

* We can identify the channels witness to specific classes of
glitches and feed this information back to instrumentalists
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Train only on events that have
this character in GW channel

The trained forest has the most
splits on a specific set of channels

This “jitter” is caused by a non-
linear coupling of slow motion of
the optics with noise at higher
frequencies in the output mode
cleaner

Time [seconds)

0 3 10 15 20 25
Normalized tile energy
14



Conclusions

The key to distinguishing a gravitational wave
from an instrumental or environmental glitch
is in the auxiliary channels

Once trained, the MVCs can classify new
events rather quickly

The different classifiers find mostly the same
glitches

MVCs are not just a black box!



Future Work

expansion of input variables will lead to better
performance

— include other time-frequency analyses (e.g. Omega) to
capture more information

— direct channel readout for slow channels
classification of different glitch types

diagnosis of the physical causes of more classes of
glitches (upconversion noise)

thorough check of veto safety (hardware injections)

interfacing with CBC and Burst searches

— define a detection statistic for a search which will include
MVC output



