Numerical Relativity and Modeling of GW signals

Harald Pfeiffer Canadian Institute for Theoretical Astrophysics

GWPAW 2012 Hannover, June 4, 2012

Goal of this talk: Describe efforts to model CBC waveforms

• Compute the waveform *quickly* for *any* relevant parameters

Harald Pfeiffer GWPAW June 4, 2012

Importance for GW detectors

14000 Entire waveform 12000 **Detection** range 10000 8000 6000 4000 Inspiral waveform only 2000 200 0 100 500 300 400 Μ Ajith et al, PRD 2008

GWPAW

June 4, 2012

Event detection

Event Characterization

MCMC codes

Have we seen a BH or a NS?

Was Einstein right?

Harald Pfeiffer

Harald Pfeiffer

Basic ingredients

- Analytical results for early inspiral
- Numerical Relativity (NR) for late inspiral, merger, ringdown

GWPAW

Combine. Interpolate to continuous parameters.

June 4, 2012

Stages of Scientific Discovery

NS-NS

BH

-BH

Early results

- BH-BH kicks
- I-config. PN-NR comparisons
- I-parameter waveform models

Breadth & Depth

- Cover parameter space
- Improve quality
- Understand systematic errors

Harald Pfeiffer GWPAW June 4, 2012

Outline

- I. Introduction
- 2. Numerical Relativity
- 3. Current analytical waveform families
- 4. Going forward: Pessimistic view
- 5. Going forward: Optimism
- 6. BH-NS, NS-NS
- 7. Summary

Numerical Relativity

Harald Pfeiffer GWPAW June 4, 2012

Wednesday, June 6, 12

7

The two approaches to BH-BH

Quasi-equilibrium (Brandt&Brügmann 97) excision initial-data (Cook 02, Cook&HP 04) BSSN w/ moving punctures (Campanelli ea 06, Baker ea 06)

$$egin{array}{rcl} egin{array}{rcl} egin{array}{rcl} egin{array}{rcl} egin{array}{rcl} eta^{i} &=& eta^{4\phi} ilde{g}_{ij}, \ &ar{\Gamma}^{i} &=& eta^{jk} ilde{\Gamma}^{i}_{jk} \ &\partial_t \phi &=& \dots \ &\partial_t ilde{g}_{ij} &pprox & - ilde{A}_{ij} \ &\partial_t ilde{q}_{ij} &pprox & - ilde{A}_{ij} \ &\partial_t ilde{A}_{ij} &pprox & -\Delta ilde{g}_{ij} \ &\partial_t ilde{\Gamma}^{i} &=& \partial_t \left(ilde{g}^{jk} ilde{\Gamma}^{i}_{jk}
ight) \end{array}$$

Puncture initial-data

Finite differences w/ AMR (RIT, AEI, GATech, Goddard, Jena, Palma, Cardiff, Perimeter)

Harald Pfeiffer **GWPAW** June 4, 2012

Generalized Harmonic w/ constraint damping (Gundlach ea 05, Pretorius 05)

$$\Box g_{ab} = -2\nabla_{(a}H_{b)} + \gamma_0 \left[t_{(a}C_{b)} - \frac{1}{2}g_{ab}t^cC_c \right] + \text{lower}$$

Multi-domain spectral methods SpEC (Cornell-Caltech-CITA-Wash.)

The two approaches to BH-BH

m

5000

Finite differences w/ AMR (RIT, AEI, GeorgiaTech, Jena, Palma, Cardiff, Perimeter)

Conventional wisdom:

- -- Robust, "easy"
- -- Many short simulations
- -- Lower accuracy, higher cost Currently:
- -- about 10 orbits

-- accuracy ok for GW detection

2000 t/M

3000

4000

1000

0

NR capabilities (rough guide)

	Easy	Moderate	Hard
Mass-ratio	<3	3-6	>6
Spin large BH	<0.5	0.5-0.9	>0.9
Spin small BH	0	<0.5 ish	>0.5 ish
# orbits	<8	8-15	>20

Difficulty <u>multiplicative</u> (q=10, S/M²=0.99, 30 orbits = hard^3)

"Hard" generally involves novel research

- time-scale of simulation unpredictable
- Combining two "hard" categories <u>rarely</u> done
- Combining three "hard" categories has <u>not</u> been attempted so far

Current Waveform Models

Harald Pfeiffer GWPAW June 4, 2012

Wednesday, June 6, 12

н

Phenomenological, aligned spins

Unequal-mass, aligned spins (Ajith ea 2011) "IMRPhenomB"

- 2-dim waveform family (mass-ratio, effective spin)
- (2,2) mode calibrated against 24 sims (BAM, Ccatie, Llama)

EOB + NR

- Effective one body
 - Buonanno, Damour 1999; many papers since
- Inspiral-Merger-Ringdown waveform model based on
 - Effective Hamiltonian to capture conservative dynamics

$$H = \mu \sqrt{p_r^2 + A(r) \left[1 + \frac{p_r^2}{r^2} + 2(4 - 3\nu)\nu \frac{p_r^4}{r^2} \right]}, \qquad A(r) = \sum_{k=0}^4 \frac{a_k(\nu)}{r^k} + \frac{a_5(\nu)}{r^5}$$

Radiation reaction terms

$$\frac{dp_r}{dt} = -\frac{\partial H}{\partial p_r} + \frac{a_{\rm RR}^r}{r^2 \Omega} \hat{\mathcal{F}}_{\phi}$$

$$\frac{dp_{\varphi}}{dt} = 0 - \frac{v_{\Omega}^3}{\nu V_{\phi}^6} F_4^4(V_{\phi}; \nu, v_{\text{pole}}), \quad \text{using 4-PN term } \mathcal{F}_{8,\nu=0} + \nu A_8$$

- Attach ringdown modes
- **★** Fit parameters to NR simulations

EOB for non-spinning BH-BH

Physical parameter mass-ratio q

* "EOBNRv2" Pan ea, 2011

- supersedes EOBNRvI (Buonnano ea 2007)
- Five modes: (2,2), (2,1), (3,3), (4,4), (5,5)
- calibrated against SpEC q=1,2,3,4,6.

EOB for aligned spins

EOB w/ aligned spins "SEOBNRvI"

- Taracchini ea 2012
- (2,2) mode calibrated against 7x SpEC & Teukolsky code
- <u>Prototype-model</u>: Intended for re-calibration with more NR sims

Caveats:

- Calibrated in tiny region of param space:
 (a) zero spin q=1,2,3,4,6
 (b) q=1, equal spin ±0.44
- Current EOB model fails for aligned spins >0.7

Taracchini ea 2012

Precessing BH-BH

First generic spin model (Sturani ea 2010)

- Based on 24 MayaKranc sims
- TaylorT4 until very close to merger & phenomenological Ansatz

1/2 of the Sturani ea NR waveforms

Reasons for Pessimism

Harald Pfeiffer GWPAW June 4, 2012

Important properties of NR waveforms

- Accuracy of NR
- Length of NR
- # of NR waveforms / Parameter space coverage

Length requirements for NR

Must switch to NR early enough to avoid large PN errors

Length: GW-<u>detection</u>

- - Less stringent requirements
 - More difficult to analyze (need continuous waveform models to perform maximization)

Hannam ea '10, Ohme ea '11

 ~10 NR orbits sufficient for large parts of non-precessing parameter space

Length: Parameter estimation

June 4, 2012

- Start NR so early that different PN approximants cannot be distinguished by LIGO
- need <u>much</u> longer NR waveforms
 - Hannam ea 2010
 - Ohme ea 2011
 - Boyle 2011
 - MacDonald ea 2011

GWPAW

• Damour ea 2011

Wednesday, June 6, 12

Harald Pfeiffer

Length: Parameter estimation

New 30 orbit equal-mass, zero spin simulation

 Confirm previous results

Length-Statements depend on λ

Non-spinning, unequal masses

Longer NR-waveforms: Alternatives

 $\frac{T}{M} \approx 5\nu^{3/5} (2\pi N)^{8/5}$

Option I: Longer NR?

• Can **not** perform long enough sims

Option 2: Live with it

Ohme ea 2011: Systematic errors δM/M~0.1%, δ(S/M²)~ 0.1

Option 3: Wait for 4PN

• Buys us a factor of 2

Option 4: Relax rigor

- Only δh <u>tangential</u> to signal-manifold causes systematic errors
 (→Ilya Mandel's talk). Give up on testing GR with orthogonal δh
- Fit PN or EOB to improve agreement with NR Introduces <u>dependence</u> between NR and analytical waveforms, which may bias accuracy estimate of model.

Estimated impact of 4-PN

TaylorT4 phase-evolution

$$\frac{dx}{dt} = \frac{64c^3\nu}{5GM}x^5\left(1 + \sum_k A_k x^k\right)$$

Sufficient vs. necessary

Idh//h

- Detector calibration might dominate error budget
- Error <u>orthogonal</u> to signal manifold does not impact parameter estimation

More work needed

Parameter space coverage

Harald Pfeiffer GWPAW June 4, 2012

Ninja 2

8 NR groups participate

- Required NR length & accuracy roughly in line with event detection needs (on lenient side)
 - Quick results, not perfect ones

Begin

• Summer 2009

Waveforms complete

• Spring 2012

Harald Pfeiffer

29

Ninja 2 parameter space coverage

Goal: Sample aligned-spin parameter space

June 4, 2012

- Outcome: Two I-dim subspaces sampled:
 - Equal-mass
 & equal-spin
 - Non-equal mass & zero spin
- Sprinkling of NR runs away from these subspaces.

GWPAW

NR-AR collaboration

Numerical Relativity -- Analytical Relativity

- Perform high-quality NR simulations, use waveforms to construct waveform models
- 9 NR groups participate
- II Mio CPU-hours from NSF + indidvidual group's resources
- NR-length and -accuracy more demanding than Ninja 2
 - 10 orbits, 0.25rad phase error (still insufficient for indistinguishability criteria)

Start: Late 2009

Expected completion of Waveform catalog: Summer 2012

- ~30 waveforms
- Extended coverage of aligned spin systems

SpEC Parameter Survey

- Led by Abdul Mroue+HP at CITA, in collaboration with Caltech, Cornell & Fullerton
 - 30 Mio CPU-hours on Compute Canada systems
 - I00 NR runs (+600 further configurations circularized)

Started Sep 2009

Runs mostly complete

- Improvements of mergers in progress
- Extrapolation of precessing waveforms in progress

Why does this take so long?

high CPU-cost

- Runs take months, use 100,000's of CPU-hours each.
- This compounds supercomputer problems
- Genuine novel research is done along the way
 - Eccentricity removal, hybridization, error estimates
 - Boldly go where no code has gone before
 - {longer, more accurate, precessing, mergers} require many trials

Validation, data-interfaces

- Validate PN codes, hybridization codes.
- Fix problems in NR waveforms. Standardize data-formats

Finite man-power, tedious and repetitive

- Easily distracted with more fun, shorter time-scale research
- Big Dog

Precessing BH-BH

Harald Pfeiffer GWPAW June 4, 2012

The Frontier: Precessing systems

Vast parameter space

- Precessing 7-dim vs. non-precessing 3-dim
- Eccentricity adds 2-dim in both cases

Little concerted effort so far

• Only short sims, or individual longish simulations

Efforts ramping up:

- NR-AR collab: ~dozen waveforms in progress
- SpEC parameter survey
 - SXS collab. (Cornell, Caltech, CITA, U Wash, Fullerton)
 - ~50 waveforms in progress

Pushing the envelope

- ***** q=9.5, χ_A=0.5, χ_B=0
- Orbital plane flips over

Serguei Ossokine, HP + SXS

Harald Pfeiffer

GWPAW June 4, 2012

S. Ossokine, HP + SXS

37

Pushing the envelope

φ=6, χ_A=0.9, χ_B=0.3
 8 orbits

Larry Kidder + SXS

Ylm decomposition of GW

Wednesday, June 6, 12

A cynic's summary so far

We have analytical waveform models for aligned spin systems

Based on a ~dozens of NR waveforms, that ...
 ... are so short that parameter estimation is compromised
 ... are restricted (mostly) to two I-dim subspaces of the 3-dim param space

Computing a few dozens of NR waveforms...

• ... takes three years

The precessing waveform parameter-space is ...

• ... humungous

4^7 / (dozens/year) = centuries

• ... interesting and complicated

Reasons for Optimism

Harald Pfeiffer GWPAW June 4, 2012

Optimism

For event-detection, we're doing quite good, actually:

- Two independent waveform models (cross-checks!)
- Reasonably accurate (sensitive to most non-precessing systems)
- Fitting analytical models to NR has been easier than producing NR waveforms. With new NR simulations, I'll expect the analytical waveform models to quickly adopt and further improve.

NR has learned a lot during the last round of 3-year efforts. Many tools were developed.

 robustness, automation, behavior of codes, error requirements, hybridization, extrapolation, PN codes, ...

NR is advancing

NR-AR (no img)

SOON

SpEC configurations

		q =	$1, \chi_1 = \chi_2 = \chi$		
0.3	- SpEC q = 1.0 χ = -0.95	- BAM q = 1.0 χ = -0	.85 BAM	q = 1.0 χ = -0.75	BAM q = 1.0 χ = -0.5
0.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		\$MMM +////\$///	www.ewww	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-0.3	-	""[
0.3	- SpEC q = 1.0 χ = -0.44	Llama q = 1.0 χ = -	0.4 J BAM	q = 1.0 χ = -0.25	Llama q = 1.0 χ = -0.2
0.0	AVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV				
-0.3	-				
0.3	- BAM g = 1.0 χ = 0.0	GATech q = 1.0 χ =	0.0 Llam	$a q = 1.0 \chi = 0.0$	SpEC q = $1.0 \chi = 0.0$
0.0				~~~~~	
-0.3	-				
0.3	- GATech g = 1.0 χ = 0.2	BAM g = 1.0 χ = 0	.25 J GATec	h a = 1.0 x = 0.4	Liama $q = 1.0 x = 0.4$
0.0					
-0.3				AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	0.000000000000000000000000000000000000
0.3	SpEC g = 1.0 x = 0.44	BAMg=10 x=	0.5 GATec	ha = 10 x = 06	BAM g = 1.0 x = 0.75
0.0					
0.0					
-0.3				- 10 0.05	C1T-1-1-00
0.3					
0.0	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA			///////////////////////////////////////	000000000000000000000000000000000000000
-0.3		0000 0 100		1000.0	
0.3	- SpEC q = 1.0 χ = 0.97	+ -2000.0 -1000	0.0 0.0 -2000	t/M	.0 -2000.0 -1000.0 0. t/M
0.0	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA				
-0.3					
	-2000.0 -1000.0 t/M	0.0			
		$q \neq$	$=1, \chi_1 = \chi_2 = 0$		
0.3	– BAM q = 2.0	- GATech q = 2.0	Llama q	1 = 2.0	SpEC q = 2.0
0.0	+/////////////////////////////////////	MM HVVVVVV9VVVW		\$^^^^	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-0.3	-	r			
0.3	– BAM q = 3.0	- SpEC q = 3.0	BAM	ą = 4.0	LEAN q = 4.0
0.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			V&////////////////////////////////////	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-0.3	-		and a second		
0.3	– SpEC q = 4.0	- SpEC q = 6.0	RIT q	= 10.0	-2000.0 -1000.0 0.
0.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			····a·····a///////////////////////////	t/M
-0.3	-				$q \neq 1, \chi_1 = \chi_2 = \chi$
	-2000.0 -1000.0	0.0 -2000.0 -1000	0.0 0.0 -2000	0.0 -1000.0 0.3	- GATech q = 2.0 χ = 0.2
	t/M	t/M		t/M 0.0	
		$\chi_1 \neq \chi_2$		-0.3	
0.3	GATech g = 1.0 x1 = 0.8 x2 = 0	BAM g = 2.0 y1 = 0.25	x ₂ = 0.0 FAU a	= 3.0 $\chi_1 = 0.4 \chi_2 = 0.6$	-2000.0 -1000.0 0
0.0					t/M
0.0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
-11-2-1	L				
-0.3	-2000 0 -1000 0	0.0 -2000.0 -1000	10 00 -200	0 -1000 0 0	

Ninja2

PAST

Ninja I

Simplicity

- Perhaps precessing BH-BH waveforms continue the trend of non-precessing waveforms and are simple:
 - BH-BH waveforms are "nice" chirps with little structure (Shoemaker, Laguna, 200x)

Radiation-aligned minimally-rotating frame

- Decompose radiation in a good frame, not an inertial frame
- Schmidt ea 2011, O'Shaugnessy ea 2011:
- Polar axis of Ylm-decomposition along dominant emission direction

q=6, χ A=0.9, χ B=0.3, 8 orbits Figures courtesy Mike Boyle & Larry Kidder

Radiation-aligned minimally-rotating frame

- Decompose radiation in a good frame, not an inertial frame
- Schmidt ea 2011, O'Shaugnessy ea 2011:
 - Polar axis of Ylm-decomposition along dominant emission direction
- Boyle, Owen, HP 2011
 - Unique preferred rotation <u>about</u> emission direction

Analytical Results are powerful

Inclination angle for "flipping" BH-BH run well predicted by PN

-0.006

-0.012

SK/K

Perturbation theory and EOB predict periastronadvance for BH-BH at all mass-ratios

0.04

● GSFv -0.04 -0.018 ▲ PN -0.08× Schw -0.024 +-+GSFq0.5 0.2 0.4 0.6 0.8 0

- € EOB

Le Tiec, Mroue, ea, 2011

Dimensionality of waveform space

CBC waveforms may span only a low-dimensional space

- Reduced basis-methods
- SVD decomposition of waveforms

CAVEAT:

Cannon, Hanna, Keppel arXiv:1101.4939

BH-NS, NS-NS

Harald Pfeiffer GWPAW June 4, 2012

BH-NS, NS-NS waveform modeling

NR simulations harder

- Hydro
- micro-physics
- larger param space (total mass, EOS)
- Accuracy lower than for vacuum BH-BH sims

- Fewer simulations
- Simulations cover fewer inspiral cycles

NS-NS

Comparison NR with TaylorT4 (point-particle and w/ tidal terms)

• Bernuzzi, Thierfelder, Bruegmann 2012

FIG. 10: Comparison T4pp/T4td-NR, $r h_{22}$ (right) and $M \omega_{22}$ (left). The shaded red area at early time is the alignment region. A very thin shaded blue area (barely distinguishable on this scale) shows the uncertainty of NR data.

NS-NS

Fit EOB w/ tidal terms to equal mass NS-NS

• Baiotti ea 2011

BH-NS at mass-ratio 7

Harald Pfeiffer (CITA) CIFAR C&G, Apr 7, 2012

BH-NS q=7

aBH=0.9 aligned

aBH=0.7 aligned Harald Pfeiffer (CITA) CIFAR C&G, Apr 7, 2012

aBH=0.9, misaligned

aBH=0.9, strongly misaligned 54

Summary

BH-BH waveform models for <u>aligned spins</u> well developed

- Further work needed to shore up confidence
- Next years will see improvements with new NR sims
- Precessing waveform models are ambitious, but likely doable
 - Lots of work remains! It's not a "solved problem"
- Modeling-effort increases <u>steeply</u> with desired accuracy
 - Collaborate with data-analysis to find good compromise

* <u>Redundancy</u> is essential

- Phenom and EOB, finite-difference codes and SpEC
- Allows consistence checks and avoids single point of failure
- Data-analysis should insist on redundancy and perform independent cross-checks to validate and to guide development.