

Galactic Neutron Stars

David Kaplan University of Wisconsin, Milwaukee

June 5, 2012

Monday, June 11, 2012

The Problem

- LIGO(+VIRGO+GEO etc.) wants to detect CW emission from a (isolated) neutron star
- Such a NS would need to be:
 - Nearby: h~I/d
 - Quickly rotating: h~I/P², + finite band, noise curve
 - Elliptical: h~ε
- Current analysis on known objects gives only upper limits (e.g., Abbott et al. 2009)
- Are there any unknown objects that would be better targets?

The Problem

- LIGO(+VIRGO+GEO etc.) wants to detect CW emission from a (isolated) neutron star
- Such a NS would need to be:

Are there any indications of "missing"/ unusual populations?

urve

- Elliptical: h~ε
- Current analysis on known objects gives only upper limits (e.g., Abbott et al. 2009)
- Are there any unknown objects that would be better targets?

• N

O

Monday, June 11, 2012

detectable w/ LIGO at I kpc

See Wade et al. (2012)

Monday, June 11, 2012

Monday, June 11, 2012

- Almost 2000 radio pulsars known
 - Most are <10⁷ yrs, emission is beamed
 - Expect ~10⁹ total NS in galaxy (total birth rate 1-3 / 100 years)

- Almost 2000 radio pulsars known
 - Most are <10⁷ yrs, emission is beamed
 - Expect ~10⁹ total NS in galaxy (total birth rate 1-3 / 100 years)
- How to find the ones that aren't pulsars?
 - Radio searches: limited by dispersion/scattering in ISM
 - Finite beams, L_{radio} depends on P, P

- Almost 2000 radio pulsars known
 - Most are <10⁷ yrs, emission is beamed
 - Expect ~10⁹ total NS in galaxy (total birth rate 1-3 / 100 years)
- How to find the ones that aren't pulsars?
 - Radio searches: limited by dispersion/scattering in ISM
 - Finite beams, L_{radio} depends on P, P
 - But large numbers (models: Lorimer 2011, arXiv:1008.1928)

- Almost 2000 radio pulsars known
 - Most are <10⁷ yrs, emission is beamed
 - Expect ~10⁹ total NS in galaxy (total birth rate 1-3 / 100 years)
- How to find the ones that aren't pulsars?
 - Radio searches: limited by dispersion/scattering in ISM
 - Finite beams, L_{radio} depends on P, P
 - But large numbers (models: Lorimer 2011, arXiv:1008.1928)
 - GW does not care about beaming or P (does care about P!)

- Almost 2000 radio pulsars known
 - Most are <10⁷ yrs, emission is beamed
 - Expect ~10⁹ total NS in galaxy (total birth rate 1-3 / 100 years)
- How to find the ones that aren't pulsars?
 - Radio searches: limited by dispersion/scattering in ISM
 - Finite beams, L_{radio} depends on P, P
 - But large numbers (models: Lorimer 2011, arXiv:1008.1928)
 - GW does not care about beaming or P (does care about P!)

- Almost 2000 radio pulsars known
 - Most are <10⁷ yrs, emission is beamed
 - Expect ~10⁹ total NS in galaxy (total birth rate 1-3 / 100 years)
- How to find the ones that aren't pulsars?
 - Radio searches: limited by dispersion/scattering in ISM
 - Finite beams, L_{radio} depends on P, P
 - But large numbers (models: Lorimer 2011, arXiv:1008.1928)
 - GW does not care about beaming or P (does care about P!)

Soft X-rays:

• Accretion

- Almost 2000 radio pulsars known
 - Most are <10⁷ yrs, emission is beamed
 - Expect ~10⁹ total NS in galaxy (total birth rate 1-3 / 100 years)
- How to find the ones that aren't pulsars?
 - Radio searches: limited by dispersion/scattering in ISM
 - Finite beams, L_{radio} depends on P, P
 - But large numbers (models: Lorimer 2011, arXiv:1008.1928)
 - GW does not care about beaming or P (does care about P!)

- Accretion
- Cooling

- Almost 2000 radio pulsars known
 - Most are <10⁷ yrs, emission is beamed
 - Expect ~10⁹ total NS in galaxy (total birth rate 1-3 / 100 years)
- How to find the ones that aren't pulsars?
 - Radio searches: limited by dispersion/scattering in ISM
 - Finite beams, L_{radio} depends on P, P
 - But large numbers (models: Lorimer 2011, arXiv:1008.1928)
 - GW does not care about beaming or P (does care about P!)

- Accretion
- Cooling
- Prediction: thousands of isolated NS visible via accretion in ROSAT Xray surveys (Treves & Colpi '91; Blaes & Madau '93)

- Almost 2000 radio pulsars known
 - Most are <10⁷ yrs, emission is beamed
 - Expect ~10⁹ total NS in galaxy (total birth rate 1-3 / 100 years)
- How to find the ones that aren't pulsars?
 - Radio searches: limited by dispersion/scattering in ISM
 - Finite beams, L_{radio} depends on P, P
 - But large numbers (models: Lorimer 2011, arXiv:1008.1928)
 - GW does not care about beaming or P (does care about P!)

- Accretion
- Cooling
- Prediction: thousands of isolated NS visible via accretion in ROSAT Xray surveys (Treves & Colpi '91; Blaes & Madau '93)
- Finding: 0 found from accretion; 7.5±0.5 found from cooling Monday, June 11, 2012

143); Kaplan and van Kerkwijk (2009, ApJ, 705, 798); et al. (2011, MNRAS, 410, 2428) Kaplan (arXiv:0801 Zane

=no radio

What We Know from X-rays

- ROSAT All-Sky Survey (>0.05 count/sec):
 - Soft X-rays (0.1-2.4 keV)
 - Efficient way to find young/energetic/nearby neutron stars

	Pulsars	(non-thermal, P<400 ms)	INS (thermal, P>3 s)					
	v. young!	Crab (48.4 s ⁻¹)	RX J1856.5-3754 (3.64 s ⁻¹)					
		Vela (3.4 s ⁻¹)	RX J0720.4-3125 (1.64 s ⁻¹)					
	PSR	B0656+14 (1.92 s ⁻¹)	RX JI605.3+3249 (0.90 s ⁻¹)					
	(Geminga (0.54 s ⁻¹)	RX J0806.4-4123 (0.38 s ⁻¹)					
	PSR	k B1055-52 (0.35 s ⁻¹)	RX JI308.6+2127 (0.29 s ⁻¹)					
	old! PSR	J0437-4715 (0.20 s ⁻¹)	RX J2143.0+0654 (0.18 s ⁻¹)					
d d	or young?	Calvera (0.08 s ⁻¹)	RX <u> 0420.0-5022 (0.14</u> s ⁻¹)					
	PSR	J0538+2817 (0.06 s ⁻¹)	No Beaming!					
	PSR	BI95I+32 (0.07 s ⁻¹)						

Monday, June 11, 2012

Ο

Non-Detection of Accreting NS

- Perna et al. (2003, ApJ, 594, 936):
 - Inclusion of realistic velocity distribution $(L \sim \dot{M} \sim I/v^3)$
 - And accretion suppressed wrt Bondi
 - Weak B of ISM
 - Strong B of NS
 - Revised expectation consistent with 0 found

Types of (Isolated) Neutron Stars

Туре	Energy Source	E.G.	B(G)	Age	Р	Close?	R	0	X	Y	Bad for GW?	Refs.
Young Pulsar	Spin (+heat)	PSR B0656	~1012	<10 ⁷	30ms-8s	<300 рс	✓	✓	~	✓	spin-down quickly	
INS	Heat (+B)	RX J1856	~10 ¹³	<106	3s-10s	<200 рс	×	~	~	×	spin-down quickly++	Kaplan (arXiv: 0801.1143); Kaplan & van Kerkwijk (2009, ApJ, 705, 798)
Recycled Pulsar	Spin	PSR J0437	~109	>10 ⁸	<20 ms	<200 рс	✓	√	✓	√	spherical?	
Calvera	Spin? Heat?	Calvera	<1012	?	59 ms	yes?	×	×	~	×	?	Rutledge et al. (2008, ApJ, 672, 1137); Zane et al. (2011, MNRAS, 410, 2428); Halpern (2011, ApJ, 736 L3)
Magnetar	В	SGR 1900+14	>1014	<104	2s-10s	no	√/ ×	√	✓	√	spin-down quickly++ +, far	Mereghetti (2008, A&A Rev., 15, 225)
CCO (Anti- magnetar)	Heat	Cas A	≲ 0	<104	~200 ms	no	×	×	~	~	born with long P?	Halpern & Gotthelf (2010, ApJ, 709, 436); Halpern & Gotthelf (2011; ApJ, 733, L28)

Monday, June 11, 2012

Young Pulsars

- Examples:Vela, Crab, Geminga
- P < 400 ms
- Rotation-powered (+heat), B~10¹² G
- Radio, IR, optical,
 UV, X-ray, γ-ray

Isolated Neutron Stars

- Example: RX J1856.5-3754
- P = 3-10s
- Residual heat (+ B decay?),
 B~10¹³ G
- optical, UV, X-ray

Isolated Neutron Stars

- Example: RX J1856.5-3754
- P = 3-10s
- Residual heat (+ B decay?),
 B~10¹³ G
- optical, UV, X-ray

Recycled (ms) Pulsars

- Example: PSR J0437-4715
- P < 100 ms
- Rotation powered, B~10⁹ G, old
 - Thermal emission in Xrays from heated polar caps?
- Visible at radio, optical, UV,
 X-ray, γ-ray
- Fermi is finding many, L_Y related to Ė (Abdo et al. 2009, 2010, ...)

Calvera

- Discovered by Rutledge et al. (2008) in search for more INS
- Spectrum from Shevchuk et al. (2009)
 - kT_{BB}≈250 eV, but not a good fit
- P=59 ms (Zane et al. 2011)
 - B<10¹² G (Halpern 2011)
- Visible at X-ray
- Rotation powered(?)/residual heat(?),
 - Distance unknown, consistent with ~I kpc
 - Escaped Central Compact Object (CCO)?
 - Mildly recycled pulsar (analog of Geminga)?

Other Types of NS

- Magnetars (2s-10s):
 - B decay, B≈10¹⁴ G
 - Visible at radio, IR, optical, UV, X-ray, γ-ray
- CCOs (100ms-500ms):
 - Pavlov et al. (2004); de Luca (2008) for reviews
 - Compact Central Objects (in young SNRs)
 - Residual heat, B<10¹¹ G (anti-magnetars): Halpern & Gotthelf
 - Visible at X-ray
- No local examples of either, but young: could influence old population

What Else Should Be There?

- Kaplan et al. (2004, 2006): X-ray search for young NSs in supernova remnants
- Tight limits on 15 (of 45)
 SNRs, factor of ~10
 below normal cooling
- Accelerated cooling + low B→invisible?
 - Would then be in accreting sample
- Or something else (high v, BH, SN Ia, ...)

What Else Should Be There?

- Kaplan et al. (2004, 2006): X-ray search for young NSs in supernova remnants
- Tight limits on 15 (of 45)
 SNRs, factor of ~10
 below normal cooling
- Accelerated cooling + low B→invisible?
 - Would then be in accreting sample
- Or something else (high v, BH, SN Ia, ...)

Populations

- INS: 20%-40% of pulsars (visibility augmented by B decay); Kaplan & van Kerkwijk (2009)
 - Young sources ~consistent with enhanced (x3?) SN rate locally (Popov et al. 2005, 2006, ...); but double counting (Keane & Kramer, Gill & Heyl)?
- CCOs: 10%-20% of SNRs (based on sample of Kaplan et al. 2004)
- There should still be other NSs out there (accreting, cooling, ...)
 - ROSAT searches (Rutledge et al.; Turner et al.; Agüeros et al.) could have found some, but only found Calvera
 - ≤ 30 total remaining in ROSAT (Turner et al. 2010)
 - Deeper XMM searches (Pires et al. 2009) identified candidate(s)
 - eROSITA will conduct soft X-ray survey with x10 sensitivity of ROSAT (launch in 2012/13), expand population to >100
 - But ISM + Stefan-Boltzmann make it hard to find nearby, cool objects
 - Will help find distant, hot objects instead
- We can't find invisible objects, but wide diversity apparent in what is found Monday, June 11, 2012