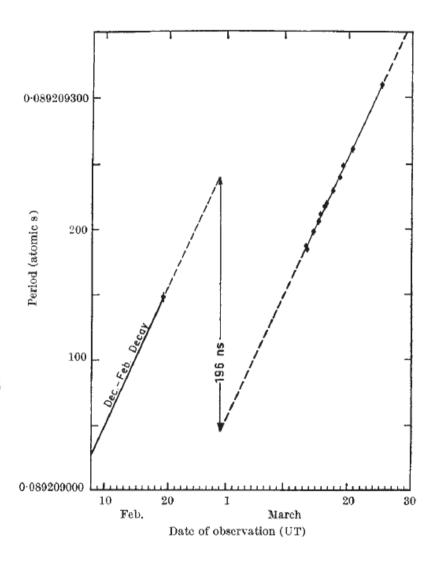
Gravitational Wave Emission from Pulsars with Glitches

Jinho Kim¹⁾
Collaboration with Hyung Mok Lee¹⁾ & Hee II Kim¹⁾

1)Department of Physics and Astronomy, Seoul National University

Pulsar Glitches

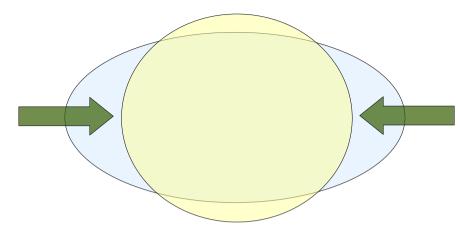
- Typical value of $\delta v/v$ is between 10^{-4} and 10^{-11} .
- Two possible mechanisms have been proposed
 - Star quake (Ruderman 1969)
 - Angular momentum transfer at the core (superfluid)-crust interface (Packard 1972; Anderson & Itoh 1975)
- Why are they so interesting? Because
 - They can be used to infer the neutron star's interior
 - They can give constraints of neutron star's equation of state
 - They also can excite some modes that can emit periodic gravitational waves.



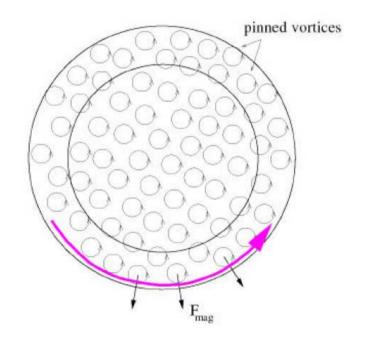
Radharrishnan & Manchester (1969)

Pulsar Glitches

- Typical value of $\delta v/v$ is between 10^{-4} and 10^{-11} .
- Two possible mechanisms have been proposed
 - Star quake (Ruderman 1969)
 - Angular momentum transfer at the core (superfluid)-crust interface (Packard 1972; Anderson & Itoh 1975)
- They are interesting because
 - They can be used to infer the neutron star's interior
 - They can give constraints of neutron star's equation of state
 - They also can excite some modes that can emit periodic gravitational waves.



Star Quake Model

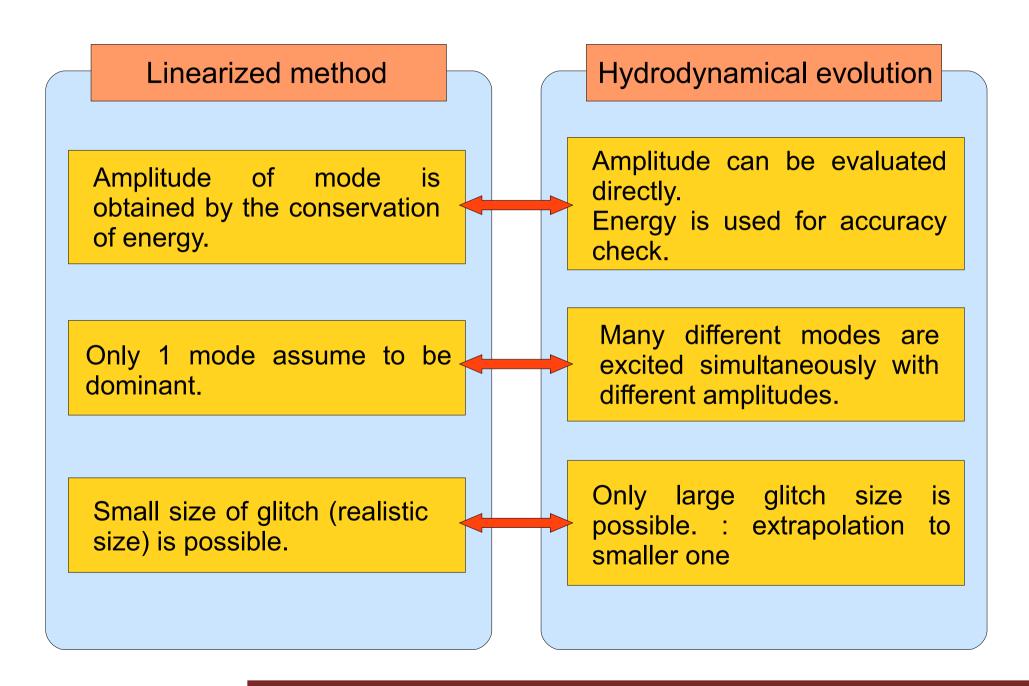


Vortex Unpinning Model

Previous Studies

- Pulsar glitch excites internal pulsation modes
 - Quasi radial mode (Sedrakian et. al. 2003, Sedrakian et. al. 2006)
 - f & p mode (Andersson & Comer 2001)
 - r-mode (Rezania & Jahan-Mari 2000)
 - meridional circulation (Bennett et. al. 2010)

Previous studies vs Our work



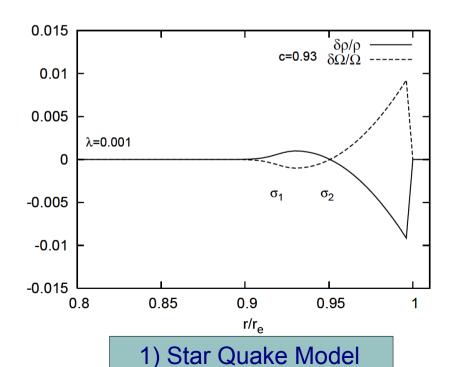
Method

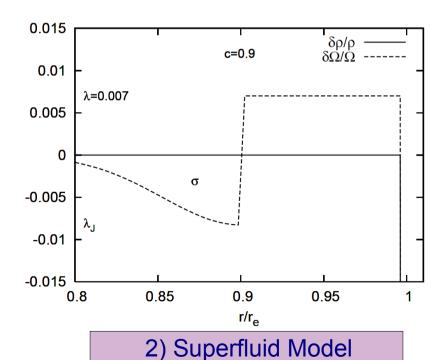
- I.Time evolution of rotating stars with perturbations which mimic pulsar glitches
- II.Extraction of the time series of quadrupole moment
- III.Fourier transformation
- IV. Estimation of GW strain amplitude

Imposed Perturbations

- We assume that
 - the depth of the neutron star's crust is 10% of its radius.
 - the effects of crust due to the hardness such as fractures are neglected.
- All perturbations should obey two constraints: total mass and total angular momentum conservations i.e.,

$$M_0 = \int \rho_0 W dV = \text{constant}, J = \int T_{\phi}^0 dV = \text{constant}.$$





Pseudo-Newtonian Approach

Taking Newtonian limit

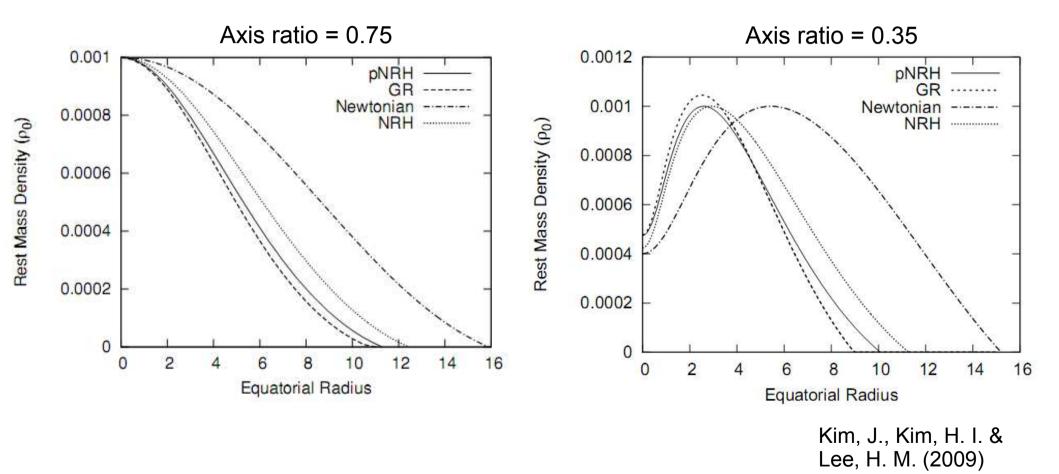
$$ds^{2} = -(1+2\Phi)dt^{2} + \frac{1}{1+2\Phi}\delta_{ij}dx^{i}dx^{j}$$

- If the metric is given, hydrodynamics equation can easily be written in standard formulation
- Einstein equation \to 2nd order approximation of (v/c) \to equation for gravitational potential : Poisson equation $\nabla^2 \Phi = 4\pi \rho_{active}$
 - Note: source term in Poisson equation is 'Active Mass Density' not just baryon density or total mass density
 - Active mass density contains all forms of energy ingredients (baryon number density as well as enthalpy, pressure and velocity)

$$\rho_{\text{active}} = \rho_0 h \frac{1 + v^2}{1 - v^2} + 2P$$

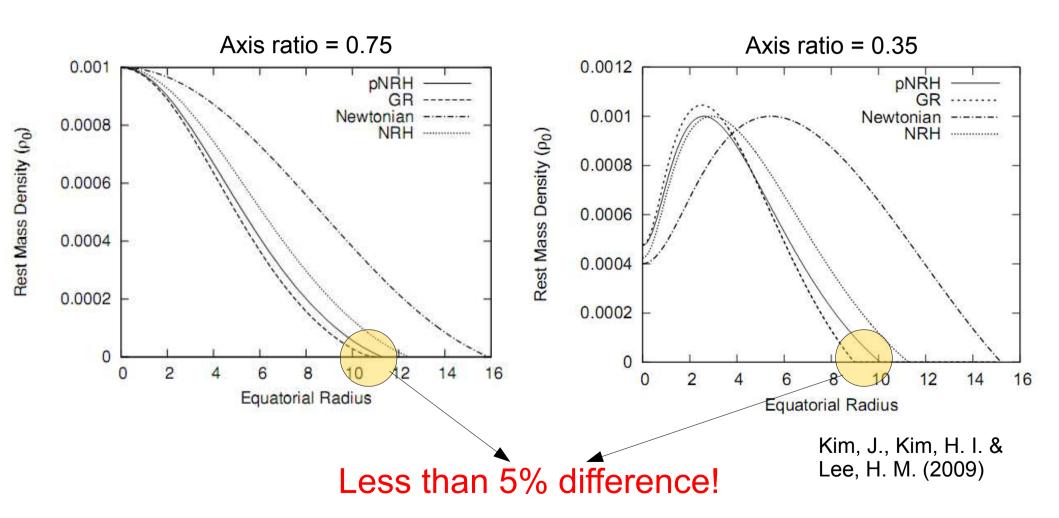
Pseudo-Newtonian Approach

- Density profile of the spheroidal and quasi-toroidal shape
 - $P = K \rho_0^{1+1/N}$ (N=1, K=100) and $\rho_{max} = 0.001$



Pseudo-Newtonian Approach

- Density profile of the spheroidal and quasi-toroidal shape
 - $P = K \rho_0^{1+1/N}$ (N=1, K=100) and $\rho_{max} = 0.001$

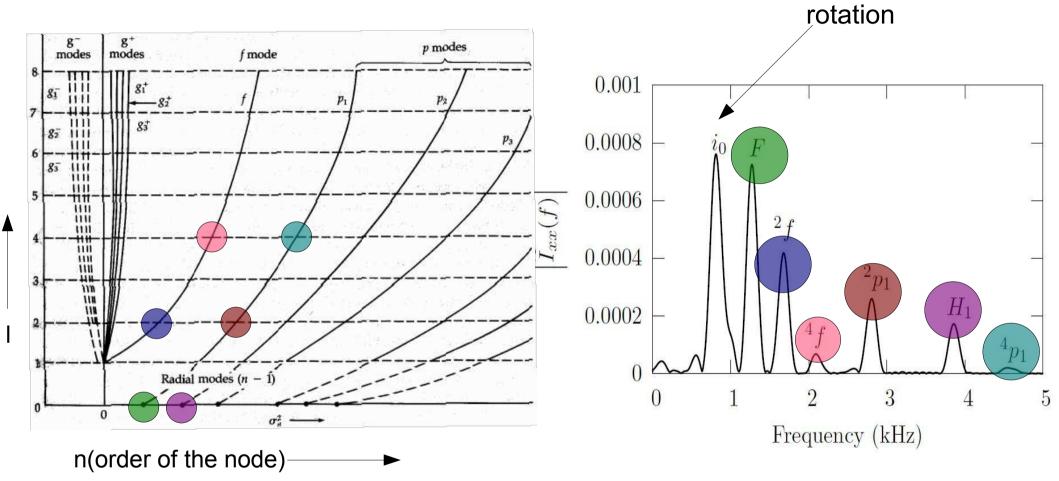


Mode Analysis & Excited Modes

- In order to extract the mode which can produce gravitational wave, we use the time series of quadrupole moment in the simulations.
- The quadrupole moments in our approach are

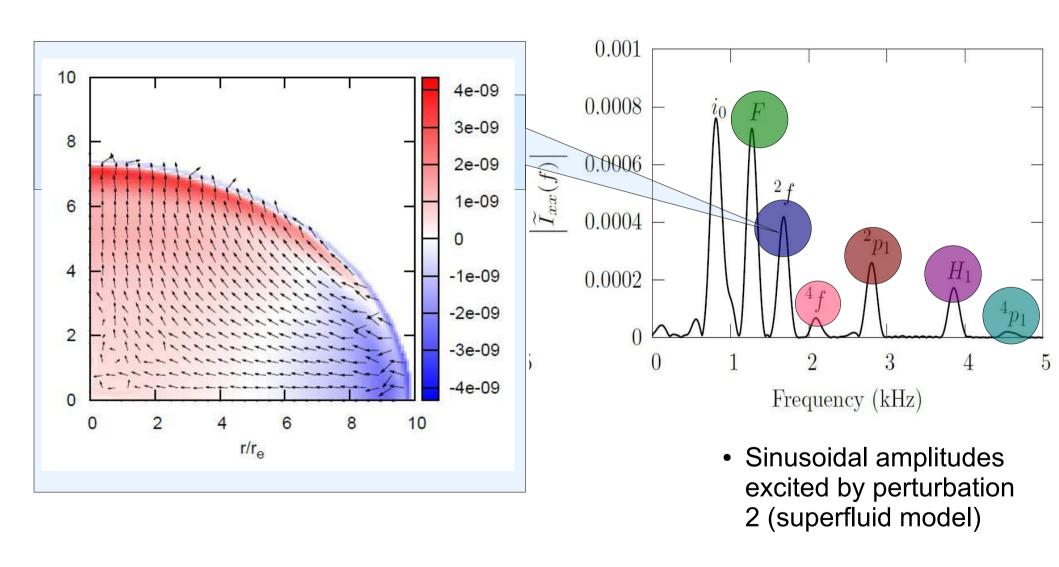
$$I_{xx} = \int \rho \left(x^2 - \frac{1}{3} r^2 \right) dV$$
, $I_{zz} = \int \rho \left(z^2 - \frac{1}{3} r^2 \right) dV$.

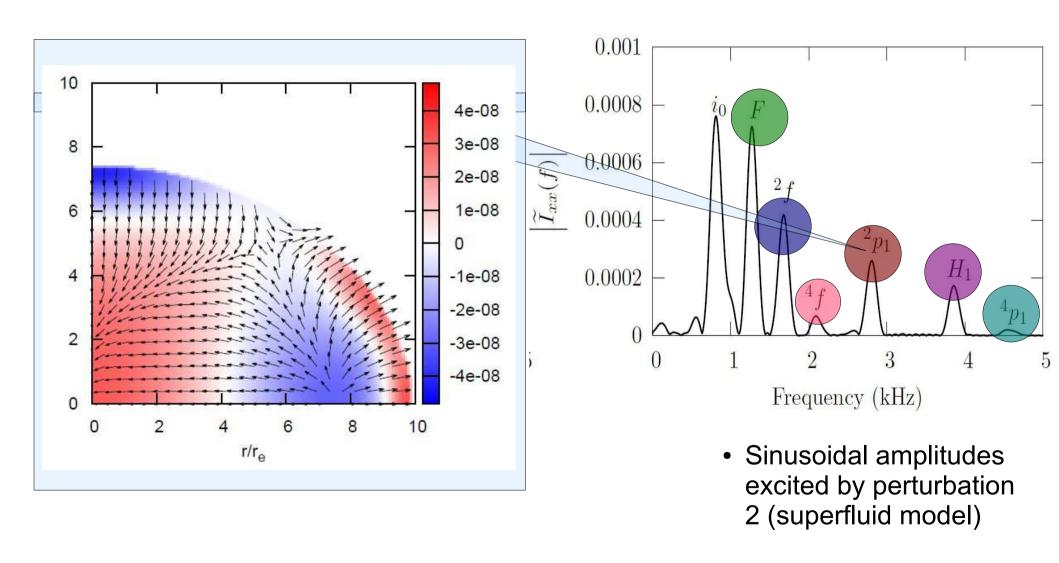
- To identify specific modes, we compare with the Newtonian and (approximated) general relativistic (Font et. al., 2001; Demmelmeier et. al., 2006; Yoshida & Eriguchi, 2000) ones.
- We also find out the eigenfunctions of modes by the mode recycling method.

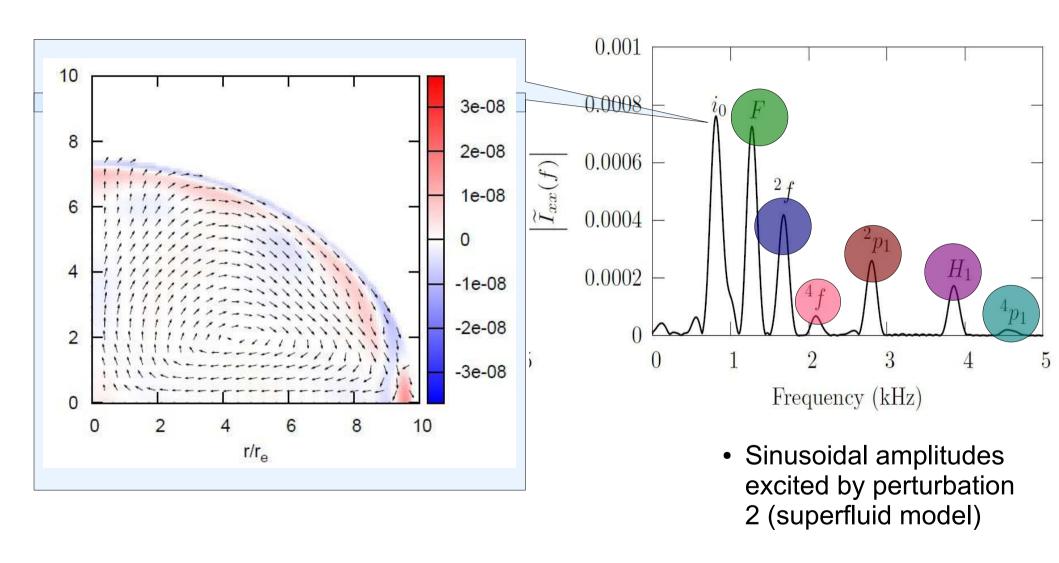


•Schematic view of the modes from Cox (1970)

 Sinusoidal amplitudes excited by perturbation 2 (superfluid model)





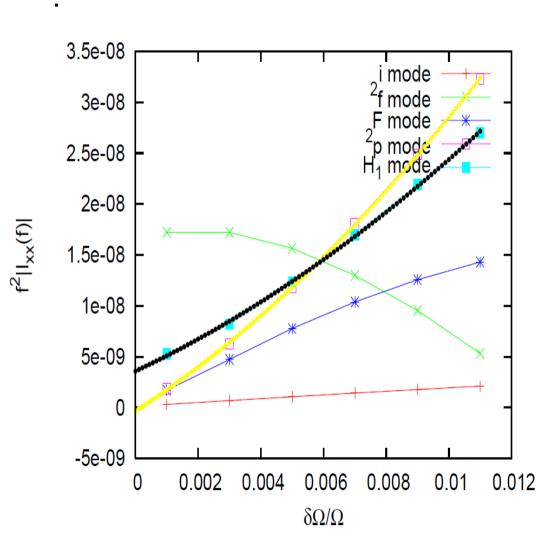


Gravitational Wave From the Glitching Pulsar

Strain amplitude of gravitational wave at a distance d can be written as

$$h_{xx} \simeq \frac{8\pi^2}{d} f^2 \tilde{I}_{xx}, h_{zz} \simeq \frac{8\pi^2}{d} f^2 \tilde{I}_{zz},$$

where \tilde{I} is amplitude of oscillating quadrupole moment I.

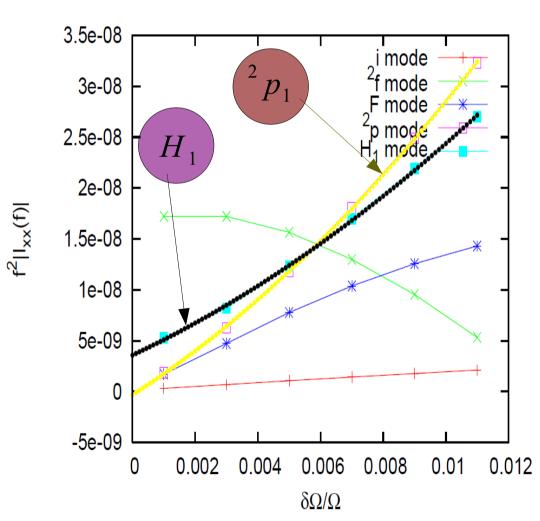


Gravitational Wave From the Glitching Pulsar

Strain amplitude of gravitational wave at a distance d can be written as

$$h_{xx} \simeq \frac{8\pi^2}{d} f^2 \tilde{I}_{xx}, h_{zz} \simeq \frac{8\pi^2}{d} f^2 \tilde{I}_{zz},$$

where \tilde{I} is amplitude of oscillating quadrupole moment I.



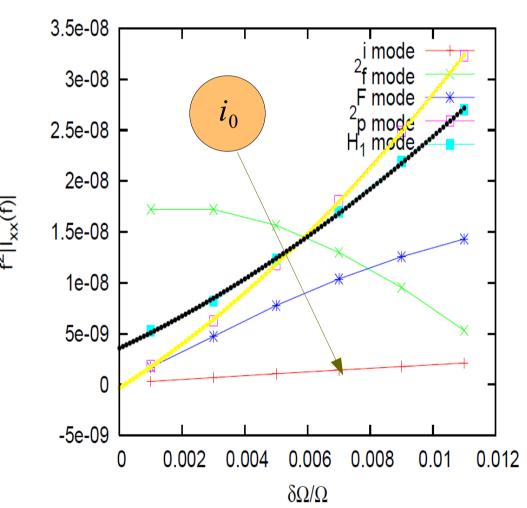
• We found that the strongest and second strongest modes are 2p_1 and H_1 , contrary to the usual assumption of the 2f mode as the strongest mode.

Gravitational Wave From the Glitching Pulsar

Strain amplitude of gravitational wave at a distance d can be written as

$$h_{xx} \simeq \frac{8\pi^2}{d} f^2 \tilde{I}_{xx}, h_{zz} \simeq \frac{8\pi^2}{d} f^2 \tilde{I}_{zz},$$

where \tilde{I} is amplitude of oscillating quadrupole moment I.



- We found that the strongest and second strongest modes are 2p_1 and H_1 , contrary to the usual assumption of the 2f mode as the strongest mode.
- The amplitude of inertial mode is not very strong but it may be able to become nonaxisymmetric r-mode which can emit stronger gravitational wave.

Characteristic strain (h_c) of gravitational wave from the glitching pulsar which has $\Delta \Omega/\Omega$ and is located at a distance d is

$$h_c = w \left(\frac{\Delta \Omega / \Omega}{1 \times 10^{-5}} \right) \left(\frac{d}{1 \text{ kpc}} \right)^{-1}$$

2	Star quake							Superfluid			
			perturbation 1 $(\times 10^{-25})$				perturbation 2×10^{-25}				
		i_0	F	2f	$^{2}p_{1}$	H_1	i_0	$^{2}p_{1}$	H_1		
•	AU1	0.00752	:==	0.282	2.31	0.373	0.145	3.37	0.975	 -	
$\rho_0^{\text{max}} = 1.28 \times 10^{-3}$	AU2	0.0731	8.97	6.86	5.03	3.52	1.01	7.49	1.28	Ω	
sequence	AU3	0.367	11.9	15.8	8.64	4.55	3.07	14.2	11.5 i	ncreases	
	AU4	1.39	14.7	24.7	9.00	5.66	8.10	13.9	3.55	7	
	BU1	0.00321	3.00	0.128	0.964	0.371	0.0943	2.19	0.746		
$M_0 = 1.4 M_{\rm sun}$	BU2	0.0130	5.65	0.967	2.30	1.17	0.560	4.86	1.49		
sequence	BU3	0.0491	6.47	2.39	2.58	1.45	1.61	7.39	3.37		
	BU4	:=	8.28	5.09	2.39	1.30	3.61	8.71	0.0356	_	

w values of various models

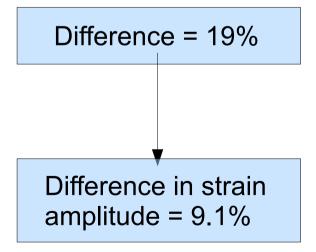
Energy of the Each Modes

• We used Newtonian definition of Kinetic energy which is written as $T = \frac{1}{2} \int \rho_0 v^2 dV$

Mode	Energy of Mode $(\times 10^{-8})$				
i_+	4.39				
i_0	38.2				
^{2}f	0.00				
F	0.91				
$^{2}p_{1}$	0.146				
${H}_1$	4.32				
2 p_{2}	2.98				
${H}_2$	0.722				
$^4 p_1$	0.00				
total	51.7				

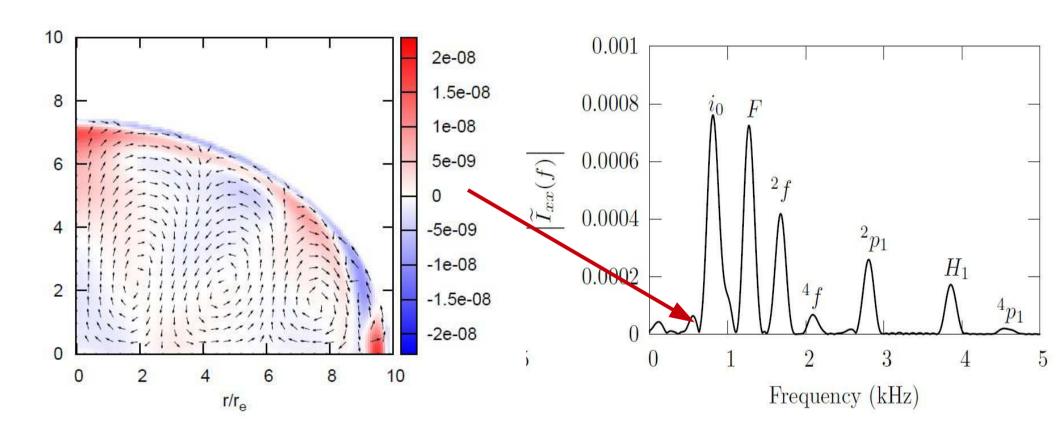
Energy of the each specific mode for the $2M_{sun}$ neutron star with $\delta \Omega/\Omega = 1.1 \times 10^{-2}$

Total input energy $=41.9 \times 10^{-8}$ given by perturbation

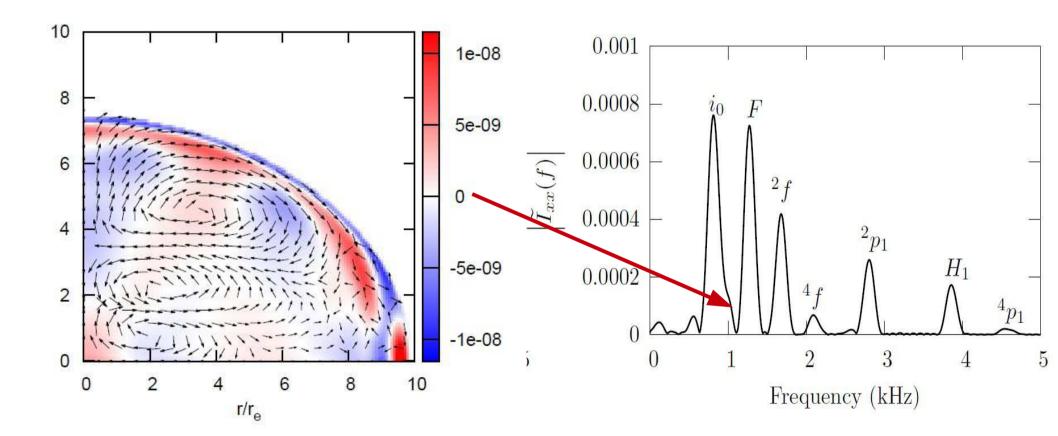


- Inertial modes
 - have frequencies proportional to rotating velocity of star.
 - are located at very narrow frequency range.

- Inertial modes
 - have frequencies proportional to rotating velocity of star.
 - are located at very narrow frequency range.



- Inertial modes
 - have frequencies proportional to rotating velocity of star.
 - are located at very narrow frequency range.



- Inertial modes
 - have frequencies proportional to rotating velocity of star.
 - are located at very narrow frequency range.
 - contain most of kinetic energy : long decay time.

- Inertial modes
 - have frequencies proportional to rotating velocity of star.
 - are located at very narrow frequency range.
 - contain most of kinetic energy : long decay time.
 - have a lot to do with r-mode