

Measuring the Hubble constant with GWs Daniel Holz The University of Chicago

H₀ is not important

- Just one number
- Gives us the age/size of the Universe. So what?
- Local, z=0 measurement, so has nothing to do with dark energy

H₀ is not important

- Just one number
- Gives us the age/size of the Universe. So what?
- Local, z=0 measurement, so has nothing to do with dark energy

Measuring H0 is important! Key point: we have exquisite precision cosmological constraints from the CMB

CMB is good

■ CMB at *z*=1100

- standard ruler:
 sound horizon at recombination
- standard fluctuation: initial amplitude of fluctuations at k=0.05 Mpc⁻¹

$CMB+H_0$ is great

Hu 2005 Suyu et al. 2012

■ CMB at *z*=1100

- standard ruler: sound horizon at recombination
- H_0 at z=0
 - tremendous lever arm

In light of CMB, constrain dark energy by measuring H₀

$CMB+H_0$ is great

- Dark energy figure-ofmerit as a function of accuracy of H₀
- Hubble helps all other methods: >40% improvement in constraints
- Errors in CMB dominate when H₀ is known to ~0.5%

Weinberg et al. 2012

Goal: Falsify the cosmological constant

All we need to do is show

 $w \neq -1$

 Control of systematics is essential

So how well can we measure H_0 ?

- Cepheids/Masers
- Type la supernovae
- Baryon Acoustic
 Oscillations

Cepheids

- Absolute calibration of distance ladder, using parallax of nearby ones
- The Hubble Space
 Telescope Key Project on the Extragalactic Distance
 Scale
- No revolutionary improvements in foreseeable future

 $H_0 = 72 \pm 8 \,\mathrm{km/s/Mpc}$

Water Masers

- Geometric measure of distance
- Approaching the Hubble flow
- Limited by local volume, so slow improvements

Type la supernovae

- Absolute distance calibrated by cepheids
- Phenomenological standard candle. No firstprinciples, physics understanding.
- Fantastic data, high statistics

 $H_0 = 73.8 \pm 2.4 \,\mathrm{km/s/Mpc}$

Type la supernovae

- Can you believe something you don't understand?
- Possible systematics include metallicity, different populations/ delay times, correlations with line widths

 $H_0 = 73.8 \pm 2.4 \,\mathrm{km/s/Mpc}$

Baryon acoustic oscillations

- Bump in CMB turns into bump in galaxy distribution: standard ruler (150 Mpc)
- Can calculate CMB bump very accurately. Can calculate galaxy bump almost as well. Physics is understood.

 $H_0 = 69.8 \pm 1.2 \,\mathrm{km/s/Mpc}$

Baryon acoustic oscillations

- Requires connecting dark matter and galaxies.
- Requires observing
 >million galaxies
 over large fields
- Cosmic variance at low z
- Peculiar velocity, bias, redshifts, etc.

Standard sirens

- Black holes are "simple"
- Physics is understood
- Black hole inspiral is well modeled
- Distance, but NOT redshift
 - need an EM counterpart

part Schutz 1986, Nature DH & Hughes 2005, ApJ Dalal, DH, Hughes, & Jain 2006, PRD Cutler and DH 2009, PRD Nissanke et al. 2010, ApJ

Statistical standard sirens

- Statistically matching possible host galaxies
- Converges for sufficient numbers of sirens

Schutz, 1986 Del Pozzo, 2012

Gamma-ray Burst Standard Sirens

- Short GRBs are known to occur at low redshift (z < 0.2)
- Short GRBs are thought to be the result of binary mergers (NS or BH)
- Will be seen by aLIGO.
 Perfect standard siren!

Systematic "free", absolute distance

LIGO measurement of Hubble

LIGO+VIRGO NS/NS binary 15 GRBs unbeamed

add IndIGO+KAGRA: factor ~2 if GRBs are beamed: factor >2 NS-NS⇒NS-BH: factor ~4

Nissanke et al., in prep

Measurement of dark energy

 Short GRB rate: 10 yr⁻¹Gpc⁻³
 PLANCK CMB priors
 4 aLIGO detectors

> 10% measure of dark energy parameters

Dalal, DH, Hughes, & Jain 2006, PRD

GRB beaming and GWs

Assume short GRBs are binary systems

no supernova

- far from center of host galaxy
- not associated with star formation
- Assume the observed rate of short GRBs is $10 \, {\rm yr}^{-1} {\rm Gpc}^{-3}$

Chen & DH, 2012

GRB beaming and GWs

LIGO S6/V2 didn't see any binaries: constrains beaming

Short GRBs are beamed

• GRB051221A: $\theta_j \sim 7^\circ$

= GRB111020A: $\theta_j \sim 3-8^\circ$

aLIGO will see short GRBs

First binary within ~1 year for HL, ~1 month for HLV

Untriggered before triggered

• If $\theta_j \lesssim 30^\circ$ we will see untriggered binary progenitors before we see GRB triggered bursts

Summary

- Measuring H_0 to percent level is important
- GW standard sirens offer a uniquely clean and powerful way to measure H₀
- Short GRBs are ideal standard sirens for aLIGO
- Based only on GRB observations, aLIGO will see ~6/year (at 30°) and ~50/year (at 10°)
- With 50 events, aLIGO measure H_0 to ~3%, w to ~10%