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Toy CWs: Sinusoids in Gaussian Noise

Simplified CW Signal Model

s(t ;A, f ) = A1 sin(2πf t) +A2 cos(2πf t)

“Amplitude parameters”: A ≡ {A1,A2}
“Phase parameters”: λ ≡ {f} (CW : λ = {f , ḟ , ~n, ~b . . .})

o Measurement xj = nj + sj(A, λ), spanning t ∈ [0,T ]

Sampling: sj ≡ s(tj) where tj = j ∆t , j = 1 . . .N

Gaussian noise nj : E
[
nj
]

= 0, E
[
ni nj

]
= Sn

2∆t δij

o Signal-to-Noise ratio: SNR2 ≡ (s|s) = 2
Sn

∫ T
0 s2(t) dt

+ SNR = A
√

T√
Sn
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Toy CWs: Sinusoids in Gaussian Noise
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Fourier power: F(x ; f ) ≡ 2
SnT

∣∣x̃(f )
∣∣2 , E [F ] = 1 + SNR2

2
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Is maxk{Fk} (Neyman-Pearson) optimal?

fs ∈ [0,5] Hz
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Is maxk{Fk} (Neyman-Pearson) optimal?

signal in DFT bins: fs ∈ {f k}
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Optimal Signal Detection I

Given data x = {xj}, how to “optimally” decide between:
HN ≡ no signal: xj = nj
HS ≡ signal s: xj = nj + sj(A, λ)
Two parts to the answer. The better-known part:

Neyman-Pearson lemma for simple hypotheses

IF all signal parameters {Asig, λsig} are known
+ Likelihood ratio Λ(x) is the “most powerful” test

Λ(x ;Asig, λsig) ≡ P
(
x |HS,Asig, λsig

)
P (x |HN)

∈ R

accept
{
HS if Λ(x) > Λ∗(pfA)
HN otherwise
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Optimal Signal Detection II

Less well-known: optimal statistic if {Asig, λsig} unknown?

Most popular answer: “maximum-likelihood”

ΛML(x) ≡ max
{A,λ}

Λ(x ;A, λ) + intuitive, but ad-hoc

Neyman-Pearson lemma for composite hypotheses

If signal parameters have probability distribution P (A, λ|HS)
+ Bayes factor (aka “marginal likelihood ratio”)

B(x) ≡ P (x |HS)

P (x |HN)
=

∫
P

Λ(x ;A, λ) P (A, λ|HS) dAdλ = 〈Λ〉P
is the most powerful test [A. Searle, arXiv:0804.1161v1].
+ Claim “X is optimal” is usually wrong, unless X = B

Reinhard Prix Phase-parameter marginalization



Toy CWs: Sinusoids in Gaussian noise
Optimal Signal Detection (unconstrained)

Cost-Constrained Optimal Signal Detection

Application to Sinusoids

+ maximum-likelihood: ln ΛML(x) = maxf F(x ; f )

+ Bayes-factor (flat prior): B(x) = 1
fmax

∫ fmax
0 eF(x ;f ) df =

〈
eF
〉

f

In practice: use DFT F(x ; f k ) for k = 1 . . .N “templates”

o nice to know the theoretical optimum, but
o not much gain in sensitivity (“intelligent design vs evolution”)

o why does ΛML(x) work so well? (esp. for pfA � 1)

If Fmax & 〈F〉+ eFmax � e〈F 〉 =⇒ B(x) ≈ 1
N eFmax

o B(x) could detect multiple sub-threshold signals
o if P ⇑, then E [max{F}]noise ⇑+ how many “independent” trials?

while Bnoise → E
[
eF
]

noise + B speaks for itself (incl “trials factor”)

o posterior P (f |x ,HS) ∝ eF(x ;f ) very informative!
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Application to Sinusoids
Example 1:
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Application to Sinusoids
Example 2:
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Application to Sinusoids
Example 2:

2

4

0 1 2 3 4 5

eF
(x

;f
)

f [Hz]

fs

ML

x = noise + signal(SNR=4.0)

×102

Reinhard Prix Phase-parameter marginalization



Toy CWs: Sinusoids in Gaussian noise
Optimal Signal Detection (unconstrained)

Cost-Constrained Optimal Signal Detection

Application to Sinusoids
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CW signal parameter-space size

Number of “templates” ∼ independent likelihood “cells”:

N ∼
∫
P

√
det g dθ ≈

√
det ḡ VP (∼ ”T ∆f ”)

where VP =
∫
P dθ is the coordinate volume, and g is the metric.

All-sky search for isolated NS: VP ∼ 103Hz× 10−8 Hz
s × 4π

+ N (T = 1y) ∼ O
(
1030)

o huge P, and signals extremely sparse [Ra Inta’s poster]

o impossible for covering, MCMC, MultiNest, NOMAD. . .
o Wanted: Optimal approximation to B(x) with limited cost

B(x) ≈ 1
N

N∑
k=1

eF(x ;λk )
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Current approach: “semi-coherent” methods

“Coarse-graining”: ∆T = 1d =⇒ ∆N ≡ N (1d) ∼ O
(
1010) 3

Compute F(∆x ;λ) over Nseg data-segments ∆x of length
∆T = T/Nseg, then sum across segments:

Σ(x ;λ) ≡
Nseg∑
l=1

F(∆xl ;λ) (“Hough”, “StackSlide”, “PowerFlux”, “Einstein@Home”,...)

3 Reduced resolution due to coarse-graining ∆T � T
7 more permissive signal model =⇒ increased false-alarms
7 non-hierarchical: information from first segment not used

to reduce parameter space
7 ad-hoc, no clear theoretical justification

+ better methods might exist (but beware the “evolution” clause)
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Simple-minded idea: 2-stage FFT

Ad-hoc attempt:
1 Compute coarse FFT F(∆x ; f ) on short segment ∆T :

(+ posterior P (f k |∆x ,HS) ∝ eF(∆x ;f k ))
2 pick c = 1 . . .Nfollow “loudest” F(∆x , f kc )

3 “zoom”: compute “fine” F(x , f j) in each f kc ± 1
2∆T

4 approximate B(x) ≈ BH(x) ∝
〈
eF(x ;f j )

〉
j=1...N ′

(Relation to MIT’s sparse-FFT?)

Would need to optimize this at fixed computing-cost ...
C[B] ∼ O (N logN )

C[BH] ∼ O
(
∆N log ∆N +NfollowNseg log Nseg

)
� C[B]
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2-stage FFT Illustrated (∆T = T/8)
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2-stage FFT Illustrated (∆T = T/8)
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2-stage FFT ROC (∆T = T/8)
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2-stage FFT ROC (∆T = T/8)
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Warning: not comparing apples to apples! (different costs)
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Conclusions

Current status:

3 Known: Bayes factor B(x) is Neyman-Pearson optimal
+ marginalize phase-parameters λ instead of maximize

o Unknown: optimal approximation to B(x) at limited cost

o Plausible: can we improve over “StackSlide”-type approach
by using available information P (f |∆x) to better distribute
computing power over P?
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