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Toy CWs: Sinusoids in Gaussian noise

Toy CWs: Sinusoids in Gaussian Noise

Simplified CW Signal Model
s(t; A, f) = Ay sin(2rft) + Ax cos(2nf t)

“Amplitude parameters”: A = {44, Ao} _
“Phase parameters™ \ = {f} (CW:X={f,f,nb...})

[ Measurement x; = n; + s;(A,\), spanning t € [0, T]
@ Sampling: s; = s(t;)) where t; = jAt, j=1...N
@ Gaussian noise n;: E [nj] =0, E[ninj] = =6

0 Signal-to-Noise ratio: SNR? = (s[s) = & I (1) at

@?SNR:A\\/SE
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Toy CWs: Sinusoids in Gaussian noise

Toy CWs: Sinusoids in Gaussian Noise
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80

sampling:
N = 1024
At=0.1s
T =102.4s

signals:

fs € [0,5] Hz
fixed SNR
noise:

n —



Toy CWs: Sinusoids in Gaussian noise

A ~ 2 2
Fourier power: F(x; ') = |[x(N|", E[F]=1+3&
Example 1:
X = noise + signal(SNR=4.0)
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Toy CWs: Sinusoids in Gaussian noise

Fourier power: F(x; ')

Example 2:

X = noise + signal(SNR=4.0)
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Toy CWs: Sinusoids in Gaussian noise

Is max,{Fx} (Neyman-Pearson) optimal?

f € [0,5] Hz
1

SNR = 4.0
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Toy CWs: Sinusoids in Gaussian noise

Is max,{Fx} (Neyman-Pearson) optimal?

f € [0,5] Hz
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Toy CWs: Sinusoids in Gaussian noise

Is max,{Fx} (Neyman-Pearson) optimal?

signal in DFT bins: fs € {fx}
1
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Optimal Signal Detection (unconstrained)

Optimal Signal Detection |

Given data x = {x;}, how to “optimally” decide between:
Hn = no signal: x; = n;

Hs = signal s: x; = nj + sj( A, \)

Two parts to the answer. The better-known part:

Neyman-Pearson lemma for simple hypotheses

IF all signal parameters { A, \sig } are known
w= Likelihood ratio A(x) is the “most powerful” test

P (X|Hs, Asiga )\sig)

A(X; Asig, Asig) = P (x|Hn)

eR

Hs if A(x) > N (pra)

accept { Hn otherwise
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Optimal Signal Detection (unconstrained)

Optimal Signal Detection Il

Less well-known: optimal statistic if { A, Asig } Unknown?

Most popular answer: “maximum-likelihood”
A (x) = Ela}\X A(x; A, ) = intuitive, but ad-hoc

5

Neyman-Pearson lemma for composite hypotheses

If signal parameters have probability distribution P (A, \|Hs)
1= Bayes factor (aka “marginal likelihood ratio”)
P (x|#s) /
B(x)= ——25= [ Ax; A\ P(A NHs) dAdN = (A
()= B = LA AN P (A M) (Ne
is the most powerful test [A. Searle, arXiv:0804.1161v1].
= Claim “X is optimal” is usually wrong, unless X = B
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Optimal Signal Detection (unconstrained)

Application to Sinusoids

= maximum-likelihood: In AML( ) = max; F(x; )
w  Bayes-factor (flat prior): B fo'““ e df = (&),
In practice: use DFT F(x; fk) for k = 1 ...J\/ ‘templates”

1 nice to know the theoretical optimum, but
d not much gain in sensitivity (intelligent design vs evolution”)
Q why does Ay (x) work so well? (esp. for pa < 1)
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Optimal Signal Detection (unconstrained)

Application to Sinusoids
Example 1:
X = noise + signal(SNR=4.0)
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Optimal Signal Detection (unconstrained)

Application to Sinusoids

Example 1:
X = noise + signal(SNR=4.0)
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Optimal Signal Detection (unconstrained)

Application to Sinusoids
Example 2:
x = noise + signal(SNR=4.0)

16 + -
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Optimal Signal Detection (unconstrained)

Application to Sinusoids

Example 2:
X = noise + signal(SNrR=4.0)
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Optimal Signal Detection (unconstrained)

Application to Sinusoids

= maximum-likelihood: In AML( ) = max; F(x; )
w  Bayes-factor (flat prior): B fo'““ e df = (&),
In practice: use DFT F(x; fk) for k = 1 ...J\/ ‘templates”

1 nice to know the theoretical optimum, but
d not much gain in sensitivity (intelligent design vs evolution”)
Q why does Ay (x) work so well? (esp. for pa < 1)
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Optimal Signal Detection (unconstrained)

Application to Sinusoids

= maximum-likelihood: In AML( ) = max; F(x; )
w  Bayes-factor (flat prior): B fo'““ e df = (&),
In practice: use DFT F(x; fk) for k = 1 ...J\/ ‘templates”

1 nice to know the theoretical optimum, but
d not much gain in sensitivity (intelligent design vs evolution”)
Q why does Ay (x) work so well? (esp. for pa < 1)

If Fax Z <-F> wr gfmx s ef) — B(X) ~ /l\/-e]:m‘”‘
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Optimal Signal Detection (unconstrained)

Application to Sinusoids

i maximum-likelihood: InAML( )—maxff(x- f)
w  Bayes-factor (flat prior): B fo'““ e df = (&),

In practice: use DFT F(x; fk) for k = 1 ...J\/ ‘templates”

1 nice to know the theoretical optimum, but
d not much gain in sensitivity (intelligent design vs evolution”)
Q why does Ay (x) work so well? (esp. for pa < 1)

If Fax Z <-F> wr gfmx s ef) — B(X) ~ /l\/-e]:m‘”‘
1 B(x) could detect multiple sub-threshold signals
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Optimal Signal Detection (unconstrained)

Application to Sinusoids

= maximum-likelihood: In AML( )— max; F(x; f)
w  Bayes-factor (flat prior): B fo'““ e df = (&),
In practice: use DFT F(x; fk) for k = 1 ...J\/ ‘templates”

1 nice to know the theoretical optimum, but

d not much gain in sensitivity (intelligent design vs evolution”)

Q why does Ay (x) work so well? (esp. for pra < 1)

If Fnax 2 (F) w5 eFm > 0F) — B(x) ~ {.eFm
1 B(x) could detect multiple sub-threshold signals

Q if P 1, then E [max{F}]
while Byoise — E [€”]

l@? [H ” H r?
noise how many “independent” trials?

= B speaks for itself (incl “trials factor”)
noise
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Optimal Signal Detection (unconstrained)

Application to Sinusoids

= maximum-likelihood: In AML( )— max; F(x; f)
w  Bayes-factor (flat prior): B fo'““ e df = (&),
In practice: use DFT F(x; fk) for k = 1 ...J\/ ‘templates”

1 nice to know the theoretical optimum, but

d not much gain in sensitivity (intelligent design vs evolution”)

Q why does Ay (x) work so well? (esp. for pra < 1)

If Fnax 2 (F) w5 eFm > 0F) — B(x) ~ {.eFm
1 B(x) could detect multiple sub-threshold signals

Q if P 1, then E [max{F}]
while Byoise — E [€”]

l@? [H ” H r?
noise how many “independent” trials?

= B speaks for itself (incl “trials factor”)
noise

0 posterior P (f|x, Hs) o e” %) very informative!
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Cost-Constrained Optimal Signal Detection

CW signal parameter-space size

Number of “templates” ~ independent likelihood “cells”:

NN/\/detgdez Jdetg Ve (~"TAf)
P

where Vp = fp dd is the coordinate volume, and g is the metric.
All-sky search for isolated NS: Vi ~ 103Hz x 107882 x 47
w N(T =1y) ~ 0 (10%)

(1 huge P, and signals extremely sparse [Ra Inta’s poster]
1 impossible for covering, MCMC, MultiNest, NOMAD...
(1 Wanted: Optimal approximation to B(x) with limited cost

1 N
~ — ]:(X;)\k)
B(x) N;e
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Cost-Constrained Optimal Signal Detection

Current approach: “semi-coherent” methods

“Coarse-graining”: AT = 1d = AN =N (1d) ~ O (10"%) v

Compute F(Ax; \) over N, data-segments Ax of length
AT = T/Nsg, then sum across segments:
Nscg
Z(X; )\) = Z .7:(AX/; )\) (“Hough”, “StackSlide”, “PowerFlux”, “Einstein@Home”,...)
I=1
v/ Reduced resolution due to coarse-graining AT < T
X more permissive signal model = increased false-alarms

X non-hierarchical: information from first segment not used
to reduce parameter space
X ad-hoc, no clear theoretical justification

= better methods might exist (but beware the “evolution” clause)

Reinhard Prix Phase-parameter marginalization



Cost-Constrained Optimal Signal Detection

Simple-minded idea: 2-stage FFT

Ad-hoc attempt:

@ Compute coarse FFT F(Ax; f) on short segment AT:
(== posterior P (fx|Ax, Hs) o« e (AxTk))

@ pick c = 1... Nionow “loudest” F(Ax, fy.)

@ “zoom”: compute “fine” F(x, ;) in each fy, + 53+

© approximate B(x) ~ By/(x) o« (&7 i)
(Relation to MIT’s sparse-FFT?)

j=1..N"

Would need to optimize this at fixed computing-cost ...
@ C[B] ~ O (NlogN)
@ C[By] ~ O (AN 'log AN + Niotiow Nseg 109 Nseg ) < C[B]
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Cost-Constrained Optimal Signal Detection

2-stage FFT lllustrated (AT = T/8)
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Cost-Constrained Optimal Signal Detection

2-stage FFT lllustrated (AT = T/8)
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Cost-Constrained Optimal Signal Detection

2-stage FFT lllustrated (AT = T/8)
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Cost-Constrained Optimal Signal Detection

2-stage FFT ROC (AT = T/8)
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Cost-Constrained Optimal Signal Detection

2-stage FFT ROC (AT = T/8)
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Cost-Constrained Optimal Signal Detection

2-stage FFT ROC (AT = T/8)
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Cost-Constrained Optimal Signal Detection

2-stage FFT ROC (AT = T/8)

SNR = 7.0, N =511, AN =64
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Warning: not comparing apples to apples! (different costs) '
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Cost-Constrained Optimal Signal Detection

Conclusions

Current status:

v Known: Bayes factor B(x) is Neyman-Pearson optimal
= marginalize phase-parameters A instead of maximize

1 Unknown: optimal approximation to B(x) at limited cost
 Plausible: can we improve over “StackSlide”-type approach

by using available information P (f|Ax) to better distribute
computing power over P?
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