# Phase-parameter marginalization: a new paradigm for continuous-wave searches? or Bayesian Ramblings on CW detection methods

#### **Reinhard Prix**

#### Albert-Einstein-Institut Hannover

#### GWPAW2012, June 2012, Hannover

LIGO-G1200438-v2





#### 2 Optimal Signal Detection (unconstrained)

#### 3 Cost-Constrained Optimal Signal Detection







#### Optimal Signal Detection (unconstrained)

#### 3 Cost-Constrained Optimal Signal Detection



## Toy CWs: Sinusoids in Gaussian Noise

#### Simplified CW Signal Model

$$s(t; \mathcal{A}, \mathbf{f}) = \mathcal{A}_1 \sin(2\pi \mathbf{f} t) + \mathcal{A}_2 \cos(2\pi \mathbf{f} t)$$

"Amplitude parameters":  $A \equiv \{A_1, A_2\}$ "Phase parameters":  $\lambda \equiv \{f\}$  (CW :  $\lambda = \{f, \dot{f}, \vec{n}, \vec{b} \dots\}$ )

□ Measurement  $x_j = n_j + s_j(A, \lambda)$ , spanning  $t \in [0, T]$ 

- Sampling:  $s_j \equiv s(t_j)$  where  $t_j = j \Delta t$ ,  $j = 1 \dots N$
- Gaussian noise  $n_j$ :  $E[n_j] = 0$ ,  $E[n_i n_j] = \frac{S_n}{2\Delta t} \delta_{ij}$

□ Signal-to-Noise ratio:  $\text{SNR}^2 \equiv (s|s) = \frac{2}{S_n} \int_0^T s^2(t) dt$ SNR =  $\frac{A\sqrt{T}}{\sqrt{S_n}}$ 

#### Toy CWs: Sinusoids in Gaussian Noise



Reinhard Prix Phase-parameter marginalization

# Fourier power: $\mathcal{F}(x; \mathbf{f}) \equiv \frac{2}{S_n T} |\widetilde{x}(\mathbf{f})|^2$ , $E[\mathcal{F}] = 1 + \frac{SNR^2}{2}$

Example 1:



Reinhard Prix Phase-parameter marginalization

# Fourier power: $\mathcal{F}(x; \mathbf{f}) \equiv \frac{2}{S_n T} |\tilde{x}(\mathbf{f})|^2$ , $E[\mathcal{F}] = 1 + \frac{SNR^2}{2}$

Example 2:



Reinhard Prix Phase-parameter marginalization

# Is $\max_k \{\mathcal{F}_k\}$ (Neyman-Pearson) optimal?



# Is $\max_k \{\mathcal{F}_k\}$ (Neyman-Pearson) optimal?



# Is max<sub>k</sub>{ $\mathcal{F}_k$ } (Neyman-Pearson) optimal?

#### signal in DFT bins: $f_s \in \{f_k\}$



#### Outline

#### Toy CWs: Sinusoids in Gaussian noise

#### 2 Optimal Signal Detection (unconstrained)

#### 3 Cost-Constrained Optimal Signal Detection



### **Optimal Signal Detection I**

Given data  $x = \{x_j\}$ , how to "optimally" decide between:  $\mathcal{H}_N \equiv \text{no signal: } x_j = n_j$   $\mathcal{H}_S \equiv \text{signal } s: x_j = n_j + s_j(\mathcal{A}, \lambda)$ Two parts to the approver. The better known parts

Two parts to the answer. The better-known part:

#### Neyman-Pearson lemma for simple hypotheses

IF all signal parameters  $\{A_{sig}, \lambda_{sig}\}$  are *known* Kikelihood ratio  $\Lambda(x)$  is the "most powerful" test

$$\Lambda(x; \mathcal{A}_{\mathrm{sig}}, \boldsymbol{\lambda}_{\mathrm{sig}}) \equiv \frac{P\left(x | \mathcal{H}_{\mathrm{S}}, \mathcal{A}_{\mathrm{sig}}, \boldsymbol{\lambda}_{\mathrm{sig}}\right)}{P(x | \mathcal{H}_{\mathrm{N}})} \in \mathbb{R}$$

$$ext{accept} \left\{ egin{array}{l} \mathcal{H}_{\mathrm{S}} & ext{if } \Lambda(x) > \Lambda^{*}(p_{\mathrm{fA}}) \ \mathcal{H}_{\mathrm{N}} & ext{otherwise} \end{array} 
ight.$$

## **Optimal Signal Detection II**

Less well-known: optimal statistic if  $\{A_{sig}, \lambda_{sig}\}$  unknown?

Most popular answer: "maximum-likelihood"

 $\Lambda_{\mathrm{ML}}(x) \equiv \max_{\{\mathcal{A},\lambda\}} \Lambda(x; \mathcal{A}, \lambda)$  is intuitive, but *ad-hoc* 

#### Neyman-Pearson lemma for composite hypotheses

If signal parameters have probability distribution  $P(\mathcal{A}, \lambda | \mathcal{H}_S)$ Bayes factor (aka "marginal likelihood ratio")

$$\mathcal{B}(x)\equiv rac{P\left(x|\mathcal{H}_{\mathrm{S}}
ight)}{P\left(x|\mathcal{H}_{\mathrm{N}}
ight)}=\int_{\mathbb{P}}\Lambda(x;\mathcal{A},oldsymbol{\lambda})\,P\left(\mathcal{A},oldsymbol{\lambda}|\mathcal{H}_{\mathrm{S}}
ight)\,d\mathcal{A}\,doldsymbol{\lambda}=\langle\Lambda
angle_{\mathbb{P}}$$

is the most powerful test [A. Searle, arXiv:0804.1161v1].

Solution "X is optimal" is usually wrong, unless X = B

ヘロン ヘアン ヘビン ヘビン

ъ

## Application to Sinusoids

- **maximum-likelihood:**  $\ln \Lambda_{ML}(x) = \max_{f} \mathcal{F}(x; f)$
- Bayes-factor (flat prior):  $\mathcal{B}(x) = \frac{1}{f_{\text{max}}} \int_0^{f_{\text{max}}} e^{\mathcal{F}(x;f)} df = \langle e^{\mathcal{F}} \rangle_f$

In practice: use DFT  $\mathcal{F}(x; f_k)$  for  $k = 1 \dots \mathcal{N}$  "templates"

- nice to know the theoretical optimum, but
- not much gain in sensitivity ("intelligent design vs evolution")
- **u** why does  $\Lambda_{ML}(x)$  work so well? (esp. for  $p_{fA} \ll 1$ )

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

## Application to Sinusoids

Example 1:



## Application to Sinusoids





## Application to Sinusoids

Example 2:



## Application to Sinusoids

Example 2:



## Application to Sinusoids

- **w** maximum-likelihood:  $\ln \Lambda_{ML}(x) = \max_{f} \mathcal{F}(x; f)$
- Bayes-factor (flat prior):  $\mathcal{B}(x) = \frac{1}{f_{max}} \int_0^{f_{max}} e^{\mathcal{F}(x;f)} df = \langle e^{\mathcal{F}} \rangle_f$

In practice: use DFT  $\mathcal{F}(x; f_k)$  for  $k = 1 \dots \mathcal{N}$  "templates"

- nice to know the theoretical optimum, but
- not much gain in sensitivity ("intelligent design vs evolution")
- **u** why does  $\Lambda_{ML}(x)$  work so well? (esp. for  $p_{fA} \ll 1$ )

If  $\mathcal{F}_{\max} \gtrsim \langle \mathcal{F} \rangle$  is  $e^{\mathcal{F}_{\max}} \gg e^{\langle F \rangle} \Longrightarrow \mathcal{B}(x) \approx \frac{1}{N} e^{\mathcal{F}_{\max}}$ 

 $\square \mathcal{B}(x) \text{ could detect } multiple \text{ sub-threshold signals}$ 

- □ if  $\mathbb{P}$   $\Uparrow$ , then  $\mathbb{E}[\max\{\mathcal{F}\}]_{noise}$   $\Uparrow$  how many "independent" trials? while  $\mathcal{B}_{noise} \to \mathbb{E}[e^{\mathcal{F}}]_{noise} \cong \mathcal{B}$  speaks for itself (incl "trials factor")
- **D** posterior  $P(f|x, \mathcal{H}_S) \propto e^{\mathcal{F}(x;f)}$  very informative!

<ロ> (四) (四) (三) (三) (三)

- **w** maximum-likelihood:  $\ln \Lambda_{ML}(x) = \max_{f} \mathcal{F}(x; f)$
- Bayes-factor (flat prior):  $\mathcal{B}(x) = \frac{1}{f_{\text{max}}} \int_0^{f_{\text{max}}} e^{\mathcal{F}(x;f)} df = \langle e^{\mathcal{F}} \rangle_f$

In practice: use DFT  $\mathcal{F}(x; f_k)$  for  $k = 1 \dots \mathcal{N}$  "templates"

- nice to know the theoretical optimum, but
- not much gain in sensitivity ("intelligent design vs evolution")
- **u** why does  $\Lambda_{ML}(x)$  work so well? (esp. for  $p_{fA} \ll 1$ )

If  $\mathcal{F}_{\max} \gtrsim \langle \mathcal{F} \rangle$  is  $e^{\mathcal{F}_{\max}} \gg e^{\langle F \rangle} \Longrightarrow \mathcal{B}(x) \approx \frac{1}{\mathcal{N}} e^{\mathcal{F}_{\max}}$ 

 $\square \mathcal{B}(x) \text{ could detect } multiple \text{ sub-threshold signals}$ 

- $\label{eq:constraint} \begin{gathered} \textbf{if } \mathbb{P} \Uparrow, \text{ then } E\left[\text{max}\{\mathcal{F}\}\right]_{noise} \Uparrow \texttt{Iso} \text{ how many "independent" trials?} \\ & \text{while } \mathcal{B}_{noise} \to E\left[\boldsymbol{e}^{\mathcal{F}}\right]_{noise} \texttt{Iso} \text{ B speaks for itself (incl "trials factor")} \end{gathered}$
- **D** posterior  $P(f|x, \mathcal{H}_S) \propto e^{\mathcal{F}(x;f)}$  very informative!

イロン 不良 とくほう 不良 とうほ

- **w** maximum-likelihood:  $\ln \Lambda_{ML}(x) = \max_{f} \mathcal{F}(x; f)$
- Bayes-factor (flat prior):  $\mathcal{B}(x) = \frac{1}{f_{max}} \int_0^{f_{max}} e^{\mathcal{F}(x;f)} df = \langle e^{\mathcal{F}} \rangle_f$

In practice: use DFT  $\mathcal{F}(x; f_k)$  for  $k = 1 \dots \mathcal{N}$  "templates"

- nice to know the theoretical optimum, but
- not much gain in sensitivity ("intelligent design vs evolution")
- **u** why does  $\Lambda_{ML}(x)$  work so well? (esp. for  $p_{fA} \ll 1$ )

 $\mathsf{If} \ \mathcal{F}_{\max} \gtrsim \langle \mathcal{F} \rangle \Cap \ \boldsymbol{e}^{\mathcal{F}_{\max}} \gg \boldsymbol{e}^{\langle F \rangle} \Longrightarrow \mathcal{B}(x) \approx \tfrac{1}{\mathcal{N}} \boldsymbol{e}^{\mathcal{F}_{\max}}$ 

 $\square \mathcal{B}(x) \text{ could detect } multiple \text{ sub-threshold signals}$ 

□ if  $\mathbb{P}$  ↑, then  $E[\max{\mathcal{F}}]_{noise}$  ↑ <sup>ICF</sup> how many "independent" trials? while  $\mathcal{B}_{noise} \to E[e^{\mathcal{F}}]_{noise}$  <sup>ICF</sup>  $\mathcal{B}$  speaks for itself (incl "trials factor")

**D** posterior  $P(f|x, \mathcal{H}_S) \propto e^{\mathcal{F}(x;f)}$  very informative!

イロン 不良 とくほう 不良 とうほ

- **w** maximum-likelihood:  $\ln \Lambda_{ML}(x) = \max_{f} \mathcal{F}(x; f)$
- Bayes-factor (flat prior):  $\mathcal{B}(x) = \frac{1}{f_{\text{max}}} \int_0^{f_{\text{max}}} e^{\mathcal{F}(x;f)} df = \langle e^{\mathcal{F}} \rangle_f$

In practice: use DFT  $\mathcal{F}(x; f_k)$  for  $k = 1 \dots \mathcal{N}$  "templates"

- nice to know the theoretical optimum, but
- not much gain in sensitivity ("intelligent design vs evolution")
- **u** why does  $\Lambda_{ML}(x)$  work so well? (esp. for  $p_{fA} \ll 1$ )

 $\mathsf{If} \ \mathcal{F}_{\max} \gtrsim \langle \mathcal{F} \rangle \Cap \ \boldsymbol{e}^{\mathcal{F}_{\max}} \gg \boldsymbol{e}^{\langle \mathcal{F} \rangle} \Longrightarrow \mathcal{B}(x) \approx \tfrac{1}{\mathcal{N}} \boldsymbol{e}^{\mathcal{F}_{\max}}$ 

- $\square \mathcal{B}(x) \text{ could detect } multiple \text{ sub-threshold signals}$
- □ if  $\mathbb{P}$   $\Uparrow$ , then  $E[\max{\mathcal{F}}]_{noise}$   $\Uparrow$  how many "independent" trials? while  $\mathcal{B}_{noise} \to E[\mathbf{e}^{\mathcal{F}}]_{noise}$   $\bowtie$  speaks for itself (incl "trials factor")

**D** posterior  $P(f|x, \mathcal{H}_S) \propto e^{\mathcal{F}(x;f)}$  very informative!

イロト 不得 とくほ とくほ とうほ

- **w** maximum-likelihood:  $\ln \Lambda_{ML}(x) = \max_{f} \mathcal{F}(x; f)$
- Bayes-factor (flat prior):  $\mathcal{B}(x) = \frac{1}{f_{\text{max}}} \int_0^{f_{\text{max}}} e^{\mathcal{F}(x;f)} df = \langle e^{\mathcal{F}} \rangle_f$

In practice: use DFT  $\mathcal{F}(x; f_k)$  for  $k = 1 \dots \mathcal{N}$  "templates"

- nice to know the theoretical optimum, but
- not much gain in sensitivity ("intelligent design vs evolution")
- **u** why does  $\Lambda_{ML}(x)$  work so well? (esp. for  $p_{fA} \ll 1$ )

 $\mathsf{If} \; \mathcal{F}_{\max} \gtrsim \langle \mathcal{F} \rangle \; \textcircled{red}{red} \; \boldsymbol{e}^{\mathcal{F}_{\max}} \gg \boldsymbol{e}^{\langle \mathcal{F} \rangle} \Longrightarrow \mathcal{B}(x) \approx \tfrac{1}{\mathcal{N}} \boldsymbol{e}^{\mathcal{F}_{\max}}$ 

- $\square \mathcal{B}(x) \text{ could detect } multiple \text{ sub-threshold signals}$
- □ if  $\mathbb{P}$   $\Uparrow$ , then  $\mathbb{E}[\max\{\mathcal{F}\}]_{noise}$   $\Uparrow$  while  $\mathcal{B}_{noise} \to \mathbb{E}[e^{\mathcal{F}}]_{noise} \cong \mathcal{B}$  speaks for itself (incl "trials factor")
- **D** posterior  $P(f|x, \mathcal{H}_S) \propto e^{\mathcal{F}(x; f)}$  very informative!

▲御 → ▲ 臣 → ▲ 臣 → 二 臣

## Outline



#### Optimal Signal Detection (unconstrained)

#### 3 Cost-Constrained Optimal Signal Detection



## CW signal parameter-space size

Number of "templates"  $\sim$  independent likelihood "cells":

$$\mathcal{N} \sim \int_{\mathbb{P}} \sqrt{\det g} \, d\theta \approx \sqrt{\det \bar{g}} \, V_{\mathbb{P}} \quad (\sim " \, T \, \Delta f")$$

where  $V_{\mathbb{P}} = \int_{\mathbb{P}} d\theta$  is the coordinate volume, and g is the metric. All-sky search for isolated NS:  $V_{\mathbb{P}} \sim 10^3 \text{Hz} \times 10^{-8} \frac{\text{Hz}}{\text{s}} \times 4\pi$  $\ll \mathcal{N}(T = 1\text{y}) \sim \mathcal{O}(10^{30})$ 

❑ huge P, and signals extremely *sparse* [Ra Inta's poster]
 ❑ impossible for covering, MCMC, MultiNest, NOMAD...
 ❑ Wanted: Optimal approximation to B(x) with limited cost

$$\mathcal{B}(x) \approx \frac{1}{\mathcal{N}} \sum_{k=1}^{\mathcal{N}} e^{\mathcal{F}(x;\lambda_k)}$$

ヘロン ヘアン ヘビン ヘビン

## Current approach: "semi-coherent" methods

"Coarse-graining":  $\Delta T = 1d \implies \Delta \mathcal{N} \equiv \mathcal{N}(1d) \sim \mathcal{O}(10^{10})$ 

Compute  $\mathcal{F}(\Delta x; \lambda)$  over  $N_{\text{seg}}$  data-segments  $\Delta x$  of length  $\Delta T = T/N_{\text{seg}}$ , then sum across segments:  $\Sigma(x; \lambda) \equiv \sum_{l=1}^{N_{\text{seg}}} \mathcal{F}(\Delta x_l; \lambda) \quad \text{("Hough", "StackSlide", "PowerFlux", "Einstein@Home",...)}$ 

- ✓ Reduced resolution due to coarse-graining  $\Delta T \ll T$
- $\pmb{x}$  more permissive signal model  $\Longrightarrow$  increased false-alarms
- non-hierarchical: information from first segment not used to reduce parameter space
- X ad-hoc, no clear theoretical justification
- better methods might exist (but beware the "evolution" clause)



イロト イポト イヨト イヨト

## Simple-minded idea: 2-stage FFT

Ad-hoc attempt:

- Compute coarse FFT *F*(Δ*x*; *f*) on short segment Δ*T*:
   (☞ posterior *P*(*f<sub>k</sub>*|Δ*x*, *H<sub>S</sub>*) ∝ *e<sup>F(Δx; f<sub>k</sub>)*)
  </sup>
- 2 pick  $c = 1 \dots N_{\text{follow}}$  "loudest"  $\mathcal{F}(\Delta x, f_{k_c})$
- (a) "zoom": compute "fine"  $\mathcal{F}(x, f_j)$  in each  $f_{k_c} \pm \frac{1}{2\Delta T}$
- (a) approximate  $\mathcal{B}(x) \approx \mathcal{B}_{\mathcal{H}}(x) \propto \left\langle e^{\mathcal{F}(x;f_j)} \right\rangle_{j=1...\mathcal{N}'}$

(Relation to MIT's sparse-FFT?)

Would need to optimize this at fixed computing-cost ...

- $C[\mathcal{B}] \sim \mathcal{O}(\mathcal{N} \log \mathcal{N})$
- $C[\mathcal{B}_{\mathcal{H}}] \sim \mathcal{O}\left(\Delta \mathcal{N} \log \Delta \mathcal{N} + \mathcal{N}_{follow} N_{seg} \log N_{seg}\right) \ll C[\mathcal{B}]$



◆□> ◆◎> ◆注> ◆注>

## 2-stage FFT Illustrated ( $\Delta T = T/8$ )



Reinhard Prix Phase-parameter marginalization

9

토 🛌 🗉

## 2-stage FFT Illustrated ( $\Delta T = T/8$ )



9

토 🛌 🗄

## 2-stage FFT Illustrated ( $\Delta T = T/8$ )



9

< ∃→

æ

## 2-stage FFT ROC ( $\Delta T = T/8$ )



## 2-stage FFT ROC ( $\Delta T = T/8$ )



9

æ

## 2-stage FFT ROC ( $\Delta T = T/8$ )



9

æ

# 2-stage FFT ROC ( $\Delta T = T/8$ )





Reinhard Prix

## Conclusions

Current status:

- ✓ Known: Bayes factor  $\mathcal{B}(x)$  is Neyman-Pearson optimal Imaginalize phase-parameters  $\lambda$  instead of maximize
- **Unknown:** optimal approximation to  $\mathcal{B}(x)$  at limited cost
- □ Plausible: can we improve over "StackSlide"-type approach by using available information  $P(f|\Delta x)$  to better distribute computing power over  $\mathbb{P}$ ?