

Preliminary results of noise canceling on searches for continuous gravitational waves

M. Drago

P. Astone, A. Colla, E. Cuoco, S. D'Antonio, S. Klimenko, V. Necula, C. Palomba, G.A. Prodi, V. Re, V. Tewari, G. Vedovato, I. Yakushin

Outline

- Introduction
- Method
- Preliminary results on searches for continuous waves
 On real data from the first joint LIGO-Virgo run (2007)
- Future plans

Detectors noise

- Highly variable behavior
- Up-conversion and other non linear couplings
- Some artifacts not well understood

Many monitors used to measure environmental disturbances

REGRESSION METHOD

- Characterize noise disturbances of h(t) in linear or bilinear correlation to auxiliary channels (environmental or instrumental monitors)
- 2. Clean noise disturbances of h(t) correlated to by auxiliary channels

Regression Basics Wiener-Kolgomorov filter (*)

- Simple case: considering one auxiliary channel
- Estimating which features of h(t) can be predicted by its correlation with a witness channel x(t):
 - s: prediction
 - L: filter length

$$s_i = \left(\sum_{j=-L}^L a_j x_{i+j}\right)$$

a: predicting filteri, j : time indexes

- Least square minimization of the residuals:
 - N: filter
 training length

$$\sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} \left[h_i - \left(\sum_{j=-L}^{L} a_j x_{i+j} \right) \right]^2$$

* [Rev. Sci. Instrum. 83, 024501 (2012)]

M. Drago

GWPAW 2012

Wavelet transform [V. Necula et al., LIGO-P1100152]

- Allows to reduce the computation in small sub-bands
 - Calculate a bank of Wiener filters instead of a big one
 - Reduce computational complexity
- Use of Wilson-Daubechies-Meyer transformation
 Orthonormal, invertible, very low spectral leakage
- Filters are built separately for each target frequency band
 - 1 Hz for this work

Multiple witness channels

- Enhance regression (more information)
- But add noise to prediction

- Cross-correlation matrix R can be constructed using:
 - Combination of more witness channels (x, y, ...)
 describe linear noise disturbances
 - Multiplication of different witness channels: can describe up-conversion of low frequency signals

Regulators

[V. Tewari et al., LIGO-G1200288-v1]

- R matrix can be written considering related eigenvalues λ and eigenvectors O

$$\begin{pmatrix} a_{-L} \\ a_{-L+1} \\ \vdots \\ \vdots \\ a_{L} \end{pmatrix} = O \begin{pmatrix} 1/\lambda_{-L} & 0 & \cdots & 0 \\ 0 & 1/\lambda_{-L+1} & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & & 1/\lambda_{L} \end{pmatrix} O^{T} \begin{pmatrix} C_{yx}(-L) \\ C_{yx}(-L+1) \\ \vdots \\ C_{yx}(L) \end{pmatrix}$$

Typically, few eigenvalues are significant

• Regulators: Impose a threshold on eigenvalues

hard:
$$\begin{pmatrix} a_{-L} \\ a_{-L+1} \\ \vdots \\ a_{L} \end{pmatrix} = O \begin{pmatrix} 1/\lambda_{-L} & 0 & \cdots & 0 \\ 0 & 1/\lambda_{-L+1} & \cdots & 0 \\ \vdots \\ \vdots \\ a_{L} \end{pmatrix} = O \begin{pmatrix} 1/\lambda_{-L} & 0 & \cdots & 0 \\ 0 & 0 \end{pmatrix} = O^{T} \begin{pmatrix} C_{yx}(-L) \\ C_{yx}(-L+1) \\ \vdots \\ C_{yx}(L) \end{pmatrix}$$
soft:
$$\begin{pmatrix} a_{-L} \\ a_{-L+1} \\ \vdots \\ a_{L} \end{pmatrix} = O \begin{pmatrix} 1/\lambda_{-L} & 0 & \cdots & 0 \\ 0 & \vdots & \cdots & 0 \\ 0 & \vdots & \cdots & 0 \\ \vdots \\ 0 & \vdots & \ddots & 1/\lambda_{l} \end{pmatrix} = O^{T} \begin{pmatrix} C_{yx}(-L) \\ C_{yx}(-L+1) \\ \vdots \\ C_{yx}(L) \end{pmatrix}$$

Avoid
unphysical
solutions
Reduce filter
noise
Suppress
irrelevant

channels

PRELIMINARY RESULTS

The following tests are performed on 8 days of data collected by LIGO Hanford 4km detector on May 2007 scientific run

Power lines + sidebands cleaning

- Simple case
 - Power lines are well monitored by power monitors or magnetometers
 - Sidebands originated by non linear coupling with low frequency disturbances
 - Sidebands can be predicted by mixing two channels:
 - $b_{xy}[i] = x[i] \cdot y[i]$ b: channel predicting side-bands
 - x : "power line" monitor
 - y: "low frequency" monitor
 - "low frequency" monitor channels: coil actuators on input and end mirrors (see extra slides)

GWPAW 2012

Example: Power line + sidebands (1)

LIGO Hanford 4km detector [LIGO-G1200288-v1]

Example: Power line + sidebands (2)

Example: Power line + sidebands (2)

M. Drago

Analysis Procedure

Inject Continuous Waves (CW) "pulsar-like" waveforms and verify the performances of search pipelines before and after the cleaning Two search pipelines: incoherent [CQG 25, 184015 (2008)] coherent [Astrophys. J. 737 (2011) 93]

Software injections

- Fifteen CW "pulsar-like" at frequencies near power lines
 - Same parameters for all (except $H_0 e F_0$)
 - H₀
 - cos(1)
 - ψ (rad)
 - ψ_0 (rad)
 - RA_J (hh:mm:ss)
 - DEC_J (deg)
 - F₀
 - Ė (Hz/s)
 - P_{EPOCH} (mjd)

see table 0.4629676 -0.36395 5.11905 20:10:30.376 -83:50:6.662 see table -4.03e-18 54239

F _o (Hz)	H ₀ (10 ⁻²⁴)
30.00	30.0
29.74	30.0
60.00	6.5
60.49	19.0
59.55	6.5
90.51	14.0
90.29	14.0
90.00	14.0
89.55	4.9
120.47	6.5
120.00	19.0
119.44	19.0
150.48	23.0
150.00	8.2
149.50	8.2

Hough maps 180 Hz

Assuming the actual direction of the injected signal **Before Cleaning** After cleaning x10⁻⁹ x10⁻⁹ -10 -10 1200 -9 -9 1000 -8 -8 1000 -7 -7 800 Spin-down [Hz] -6 -6 -5 -4 -3 800 -5 600 600 -4 -3 400 400 -2 -2 200 -1 -1 200 0 0 180 180.1 179.95 180.05 179.95 180 180.05 180.1 Frequency [Hz] Frequency [Hz]

The injection below the power line becomes visible after cleaning

For other power lines performances are similar

Spin-down [Hz]

GWPAW 2012

Hough maps 179.11 Hz

Assuming the actual direction of the injected signal **Before Cleaning** After cleaning x10⁻⁹ x10⁻⁹ -10 -10 1200 -9 1000 -9 -8 -8 1000 -7 800 -7 Spin-down [Hz] -6 -6 800 -5 600 -5 600 -4 -4 -3 400 -3 400 -2 -2 200 -1 200 -1 0 0 179.15 179.061 179.11 179.11 179.15 179.061 Frequency [Hz] Frequency [Hz]

Injection below sidebands shows higher signal to noise ratio after cleaning.

This effect depends on noise suppression for each sideband

Spin-down [Hz]

GWPAW 2012

Hough candidates [115-125 Hz]

Critical Ratio (CR): ratio of excess signal to noise

- General observations: - Cleaning does not introduce artifacts
 - The number of candidates (N_{tot}) decreases after the cleaning
- The decrease of spurious candidates is not crucial for the results of the analysis.

(This stage is a preliminary selection)

PRELIMINARY RESULTS

Critical Ratio (CR)

	Injected pulsar Frequency (Hz)	Before cleaning	After cleaning
	59.4923	19.0	38.5
	119.1132	19.5	40.1
^	120.0	-	16.3
	120.9851	49.0	82.3
	179.1107	12.2	29.6
1	180.0	11	68.2
	180.5992	46.3	71.0
	181.0347	41.2	71
	238.8843	44.8	75.8
N	240.0	12.3	78.7
	240.9532	12.6	40.3
	299.0056	25.6	42.1
V	300.0	18.3	37.4
	300.9755	76.2	86.9

Assuming the actual direction of the injected signal

General observations:

- CR is systematically increased after the cleaning

- Greatest effect under the power lines (red)

PRELIMINARY RESULTS

Power lines

Estimated waveform amplitude

	Frequency	H ₀ /h _{inj}	SNR gain
	50 4022	0.87	1
D	59.4923	0.86	
nin	119.1132	0.96	1.18
ea		0.95	
C O	120.9851	0.96	1.23
Before		0.94	
	170 1107	0.96	1 4 4
	1/9.110/	0.96	1.44
	180.5992	0.98	1.02
ng		0.98	
ani	181.0347	0.97	1.58
Cle		0.96	
er	180.0	1.02	9.3
Aft		0.89	
	120.0	1.06	5.0
		0.93	

General observations on sidebands:

Estimated amplitudes before and after the cleaning are compatible (within 1% systematic)
The estimated SNR after the cleaning is greater than before of a factor 1.2 ÷ 1.5

Results on power lines should be better studied

PRELIMINARY RESULTS

Estimated waveform parameters

	Frequency	Δη	Δψ/90
	50 4022	-0.020	0.011
fore cleaning	59.4925	-0.009	0.022
	119.1132	0.030	-0.013
		0.004	-0.037
	120.9851	0.002	0.011
		0.0008	0.012
Be	170 1107	-0.007	0.011
	1/9.110/	-0.007	0.009
bu	180.5992	-0.005	0.0026
		-0.007	0.0048
ani	181.0347	0.007	-0.019
Cle		-0.02	0.001
er	180.0	0.03	0.082
Aft		-0.004	0.0033
	120.0	0.038	-0.068
		-0.0076	0.007

- η : $-h_x/h_+$
- ψ : polarization angle
- ∆: difference between estimated value and injected one

General observations:

The parameter
 reconstruction is not
 worsened by the cleaning.
 For most cases (especially
 for η) it is equal or
 improved (red numbers)

PRELIMINARY RESULTS

Summary and plans

Preliminary tests are encouraging

Must be extended:

- Test on over longer times (more than 8 days)
- More CW injections
 - Study parameter reconstruction
 - Study possible biases or artifacts induced by regression
- Test on Hardware injections
- Collaborate with commissioners to extend the cleaning to other frequency bands
 - Trace relevant environmental channels
- Development of the method
 - Optimizing filter length and training time
 - Optimize the coupling estimator