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By the End You Should Remember...

Binary pulsars
• Excellent tools to test gravity
• Probe a different gravitational field regime
• System diversity = complementarity

© Daniel Cantin / McGill University
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Pulsars 101
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The Binary Pulsar Population
 Binary pulsars are “special”

According to the ATNF 
catalogue:

• 2008 pulsars

• 186 binary pulsars

Credit: Kramer and Stairs (2008)

Binaries:

• Short spin periods

• Old
• Low magnetic fields
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φ = φ0 + ν(t− t0) +
1

2
ν̇(t− t0)

2 + . . .

Binary Pulsar Timing and Gravity
 Almost textbook examples

Compact objects (point mass)

Precise timing (frequency standard)

Typical TOAs precision is ~0.1% Pspin
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Binary Pulsar Dynamics
&

Relativistic Effects
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 Newtonian orbits

Timing binary pulsars allows one to determine 5 Keplerian parameters:
• Orbital period
• Eccentricity
• Longitude of periastron
• Projected semimajor axis
• Epoch of periastron

Arpad Horvath (Wikipedia)

We measure radial Doppler shifts only…
=> The orbital inclination angle is unknown.

Binary Pulsar Timing
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Post-Keplerian (PK) parameters: dynamics beyond Newton.
• PKs are phenomenological corrections (theory-independent).
• PKs are functions of Keplerian parameters, M1 and M2.

Esposito-Farese (2004)

Binary Pulsar Timing
 Relativistic orbits

More than 2 PKs = test of a given relativistic theory of gravity.
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• Testing gravity relies on orbital dynamics

• Ideally: pulsar + neutron star
eccentric + compact orbit

• About 10 known “relativistic” pulsar binaries

Binary Pulsar Timing
 Relativistic orbits

4 Weisberg & Taylor

Figure 1. Orbital decay of PSR B1913+16. The data points indicate
the observed change in the epoch of periastron with date while the
parabola illustrates the theoretically expected change in epoch for a
system emitting gravitational radiation, according to general relativity.

PSR B1913+16

• First binary pulsar discovered
(Hulse & Taylor 1975)

• First indirect evidence of gravitational wave 

emission (Taylor et al. 1979)

Weisberg & Taylor (2005)
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The Double Pulsar (PSR J0737-3039A/B), is the only known pulsar-pulsar system.

Pulsar A: 23 ms (Burgay et al., 2003)
Pulsar B: 2.8 s (Lyne et al., 2004)

Eccentricity: 0.08  Orbital period: 2.4 hrs !!! (vorbital ~ 0.001 c)

© John Rowe Animation
Australia Telescope National Facility, CSIRO

The Double Pulsar
 A unique system
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Periastron advance

Rate of precession of the
periastron: 17°yr-1 !

It takes 21 years to complete a cycle 
of precession.

The Double Pulsar
 Testing gravity

Kramer et al., 2006
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Periastron advance

Rate of precession of the
periastron: 17°yr-1 !

It takes 21 years to complete a cycle 
of precession.

The Double Pulsar
 Testing gravity

Kramer et al., 2006
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Gravitational redshift and time dilation

Needs to climb to potential well

Clocks tick at variable rate in 
gravitational potentials

The Double Pulsar
 Testing gravity

Kramer et al., 2006
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Gravitational redshift and time dilation

Needs to climb to potential well

Clocks tick at variable rate in 
gravitational potentials

The Double Pulsar
 Testing gravity

Kramer et al., 2006
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Orbital period decay

Gravitational wave emission

Orbit shrinks 7mm/day (coalescence 
timescale ~ 85 Myrs)

The Double Pulsar
 Testing gravity

Kramer et al., 2006

Monday, June 11, 2012



Orbital period decay

Gravitational wave emission

Orbit shrinks 7mm/day (coalescence 
timescale ~ 85 Myrs)

The Double Pulsar
 Testing gravity

Kramer et al., 2006
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Orbital period decay

Gravitational wave emission

Orbit shrinks 7mm/day (coalescence 
timescale ~ 85 Myrs)

Kramer et al., 2006

Double neutron star merger as seen by a theoretician

A

B

BH

The Double Pulsar
 Testing gravity
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Shapiro delay

Light travels in curved space-time

The Double Pulsar
 Testing gravity

Kramer et al., 2006
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Shapiro delay

Light travels in curved space-time

The Double Pulsar
 Testing gravity

Kramer et al., 2006
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Shapiro delay

Light travels in curved spacetime

The Double Pulsar
 Testing gravity

Kramer et al., 2006
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Mass ratio

Double Pulsar only:
mass ratio, R.

MA/MB = aBsin(i) / aAsin(i)

(theory-independent; at 1PN level at least)

The Double Pulsar
 Testing gravity

Kramer et al., 2006
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Mass ratio

Double Pulsar only:
mass ratio, R.

MA/MB = aBsin(i) / aAsin(i)

(theory-independent; at 1PN level at least)

The Double Pulsar
 Testing gravity

Kramer et al., 2006
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Testing GR and gravity

Mass ratio + 5 PK parameters

=> Yields 6-2=4 gravity tests

Best binary pulsar test

Shapiro delay “s” parameter
Agrees with GR within 0.05%
(Kramer et al. 2006)

Hulse-Taylor pulsar is 0.2%

The Double Pulsar
 Testing gravity

Kramer et al., 2006
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Precession of the spin angular momentum of a body is expected in relativistic systems.

Parallel transport in a curve space-time changes the orientation of a vector relative to distant 
observers.

Known as “geodetic precession” or “de Sitter – Fokker precession”.

Relativistic Spin Precession
 Spin-orbit coupling induces relativistic spin precession
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Ωobs = 0.44+0.48(4.6)
−0.16(0.24)

◦/yr

Changes of pulse shape and polarization over time.

PSR B1913+16 (Kramer 1998, Weisberg & Taylor 2002, Clifton & Weisberg 2008):
• Assume the predicted GR rate to map the beam

PSR B1534+12 (Stairs et al. 2004):

•

Relativistic Spin Precession
 Observational evidence of precession

GEOMETRY OF PSR B1913]16 857

FIG. 1.ÈPulse proÐle of B1913]16 observed in 1995 April

At Ðrst, we measured the amplitude ratio of the leading

and trailing components using the o†-pulse rms as an

uncertainty estimator. These are presented in Figure 2,

where we also plot data from It is seen that the newWRT.

data are in good agreement with the earlier measured trend.

Performing a weighted least-squares Ðt, we obtained a ratio

change of [1.9% ^ 0.1% per year. It is interesting to note

that our Ðt is also in agreement with the component ratio

from 1978 March which was measured using the(Fig. 2),

proÐle published by & Weisberg The ampli-Taylor (1982).

tude ratio between proÐle midpoint and trailing component

seems to remain constant at a value of about 0.17 over a

time span of 20 yr within the errors.

Measuring the separation between the leading and trail-

ing components, we followed the approach of byWRT

Ðtting Gaussian curves to the central portion of each com-

ponent. The formal accuracy determined by the Ðt error can

be up to an order of magnitude better than the sampling

time, similar to a standard template matching procedure.

We note, however, that the components are asymmetric in

shape, so that the resulting centroids might be a†ected by

FIG. 2.ÈAmplitude ratio of leading and trailing components as a func-

tion of time. Filled circles were adapted from while open circlesWRT,

represent E†elsberg measurements. The dashed line represents a linear Ðt

to the data with a slope of 1.9% yr~1. The amplitude ratio adapted from

& Weisberg is shown as a Ðlled square.Taylor (1982)

FIG. 3.ÈMeasured component separations as a function of time.

Closed circles are values presented by while open circles are mea-WRT,

surements presented here. The solid line represents the best-Ðt models

listed in The open square shown in the upper panel demonstratesTable 1.

the consistency of our measurement method with that of (see text forWRT

details).

the number of samples included in the Ðt around the peak.

In order to estimate this e†ect as the true separation uncer-

tainty, we performed Ðts including samples corresponding

to intensity levels of down to 95%, 90%, 80%, and 60%,

respectively. The resulting mean values for the separation

and their corresponding errors are presented in Figure 3

with values adapted from In order to verify thisWRT.

approach, we measured the component separation of the

1981 proÐle presented by at corresponding intensityWRT

levels. We obtained a value of in very good38¡ ^ 0¡.1,

agreement with their value. This gives conÐdence in the

consistency between our measurements and those of WRT.

3. MODELING GEODETIC PRECESSION

In what follows we will make two assumptions : (1)

general relativity is the correct theory of gravitation within

the uncertainties of our measurements, and (2) the emission

beam exhibits an overall circular hollow-coneÈlike shape,

with intensity possibly depending on magnetic longitude.

The Ðrst assumption is obviously well justiÐed, given the

excellent agreement of the measured orbital decay with the

prediction from general relativity (Taylor & Weisberg 1982,

While the assumption of an intensity dependence on1989).

magnetic longitude accounts for the component ratio

change, the hollow-coneÈlike shape follows the arguments

given by which can now be based on even more dataCWB,

GEOMETRY OF PSR B1913]16 857

FIG. 1.ÈPulse proÐle of B1913]16 observed in 1995 April

At Ðrst, we measured the amplitude ratio of the leading

and trailing components using the o†-pulse rms as an

uncertainty estimator. These are presented in Figure 2,

where we also plot data from It is seen that the newWRT.

data are in good agreement with the earlier measured trend.

Performing a weighted least-squares Ðt, we obtained a ratio

change of [1.9% ^ 0.1% per year. It is interesting to note

that our Ðt is also in agreement with the component ratio

from 1978 March which was measured using the(Fig. 2),

proÐle published by & Weisberg The ampli-Taylor (1982).

tude ratio between proÐle midpoint and trailing component

seems to remain constant at a value of about 0.17 over a

time span of 20 yr within the errors.

Measuring the separation between the leading and trail-

ing components, we followed the approach of byWRT

Ðtting Gaussian curves to the central portion of each com-

ponent. The formal accuracy determined by the Ðt error can

be up to an order of magnitude better than the sampling

time, similar to a standard template matching procedure.

We note, however, that the components are asymmetric in

shape, so that the resulting centroids might be a†ected by

FIG. 2.ÈAmplitude ratio of leading and trailing components as a func-

tion of time. Filled circles were adapted from while open circlesWRT,

represent E†elsberg measurements. The dashed line represents a linear Ðt

to the data with a slope of 1.9% yr~1. The amplitude ratio adapted from

& Weisberg is shown as a Ðlled square.Taylor (1982)

FIG. 3.ÈMeasured component separations as a function of time.

Closed circles are values presented by while open circles are mea-WRT,

surements presented here. The solid line represents the best-Ðt models

listed in The open square shown in the upper panel demonstratesTable 1.

the consistency of our measurement method with that of (see text forWRT

details).

the number of samples included in the Ðt around the peak.

In order to estimate this e†ect as the true separation uncer-

tainty, we performed Ðts including samples corresponding

to intensity levels of down to 95%, 90%, 80%, and 60%,

respectively. The resulting mean values for the separation

and their corresponding errors are presented in Figure 3

with values adapted from In order to verify thisWRT.

approach, we measured the component separation of the

1981 proÐle presented by at corresponding intensityWRT

levels. We obtained a value of in very good38¡ ^ 0¡.1,

agreement with their value. This gives conÐdence in the

consistency between our measurements and those of WRT.

3. MODELING GEODETIC PRECESSION

In what follows we will make two assumptions : (1)

general relativity is the correct theory of gravitation within

the uncertainties of our measurements, and (2) the emission
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excellent agreement of the measured orbital decay with the

prediction from general relativity (Taylor & Weisberg 1982,
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ΩGR = 0.51◦/yr

Kramer 1998
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Pulsar A eclipsed by pulsar B for ~30 seconds at conjunction

Rapid flux changes synchronized with pulsar B’s rotation (McLaughlin et al. 2004)

A

B

Time of arrival of 
B’s pulse

Double Pulsar Eclipses
 Phenomenology

Breton et al. 2008
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Double Pulsar Eclipses
 Modeling using synchrotron absorption in a truncated dipole

The “doughnut model” (Lyutikov & Thompson 2006)
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Double Pulsar Eclipses
 Modeling using synchrotron absorption in a truncated dipole

The “doughnut model” (Lyutikov & Thompson 2006)
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Double Pulsar Eclipses
 Modeling using synchrotron absorption in a truncated dipole

Breton et al. 2008
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Double Pulsar Eclipses
 Modeling using synchrotron absorption in a truncated dipole

Breton et al. 2008
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Empirical evidence of dipolar magnetic field geometry.
Eclipses are a proxy to infer the orientation of pulsar B.

Double Pulsar Eclipses
 It works!

Breton et al. 2008

A

B
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Quantitative measurement of relativistic spin precession.

Testing General Relativity in a Strong Field
 General relativity passes the test once again!

Breton et al. 2008
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Quantitative measurement of relativistic spin precession.

Testing General Relativity in a Strong Field
 General relativity passes the test once again!

Breton et al. 2008
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Pulsar B disappeared in 2009... so no more “Double Pulsar”

Testing General Relativity in a Strong Field
 By the way...
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Pulsar B disappeared in 2009... so no more “Double Pulsar”

Testing General Relativity in a Strong Field
 By the way...

2024
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Testing Theories of Gravity
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“Strong-field” regime:
• Still > 250 000 RSchwarzchild in separation but…

• Ebinding ~ 15% Etot

Esposito-Farese (2004)

Strong-field regime
 Why are tests of gravity involving pulsars interesting?
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Generalized precession rate is (Damour & Taylor, 1992, Phys. Rev. D):

In terms of a very particular choice of observable timing parameters:

Theory-Independent Test of Gravity
 Unique test... for a unique double pulsar...
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Generalized precession rate is (Damour & Taylor, 1992, Phys. Rev. D):

In terms of a very particular choice of observable timing parameters:

Test of the strong-field parameters        .

Any other mixture of timing observables would 
include additional strong-field parameters.

Theory-Independent Test of Gravity
 Unique test... for a unique double pulsar...
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Generalized precession rate is (Damour & Taylor, 1992, Phys. Rev. D):

In terms of a very particular choice of observable timing parameters:

Test of the strong-field parameters        .

Any other mixture of timing observables would 
include additional strong-field parameters.

The Double Pulsar is the only double neutron star system in which both semi-
major axes can be measured independently!

Theory-Independent Test of Gravity
 Unique test... for a unique double pulsar...
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Mass ratio from pulsar timing + white dwarf spectroscopy

Dipolar Gravitational Waves and MOND
 The pulsar-white dwarf binary PSR J1738+0333

10 Freire, Wex, Esposito-Farèse, Verbiest et al.

mc

Pb
.

Pb
.

mc

qq

Figure 5. Constraints on system masses and orbital inclination from radio and optical measurements of PSR J1738+0333 and its WD
companion. The mass ratio q and the companion mass mc are theory-independent (indicated in black), but the constraints from the
measured intrinsic orbital decay (Ṗ Int

b , in orange) are calculated assuming that GR is the correct theory of gravity. All curves intersect,
meaning that GR passes this important test. Left: cos i–mc plane. The gray region is excluded by the condition mp > 0. Right: mp–mc

plane. The gray region is excluded by the condition sin i ≤ 1. Each triplet of curves corresponds to the most likely value and standard
deviations of the respective parameters.

rived quantities that depend only on the measured TOAs
and their uncertainties.

4 GENERIC TESTS OF GRAVITY THEORIES

In order to understand the significance of the small value of
Ṗ xs
b in eq. (7) — the main experimental result of this paper

— we now discuss what physical effects could in principle be
contributing to it. According to Damour & Taylor (1991)

Ṗ xs
b = Ṗ Ṁ

b + ṖT
b + ṖD

b + Ṗ Ġ
b , (8)

where Ṗ Ṁ
b is due to mass loss from the binary, ṖT

b is a con-
tribution from tidal effects, ṖD

b is the orbital decay caused
mainly by the emission of dipolar GWs (and any extra
multipole modifying the general relativistic prediction) and

Ṗ Ġ
b is a contribution from possible (yet undetected) varia-

tions of Newton’s gravitational constant (as measured by a
Cavendish experiment). The first two terms are the “classi-
cal” terms, the last two would only be non-zero for theories
of gravity other than general relativity.

4.1 Classical terms

4.1.1 Mass loss

In Appendix A, we derive an upper limit for the mass loss
from the companion as a function of the total mass of the
system. For the pulsar, the mass loss is dominated by the
loss of rotational energy (Damour & Taylor 1991):

Ṁp

Mt
=

Ė
Mtc2

= 1.5× 10−21 s−1, (9)

which is of the same order as the upper limit for Ṁc

Mt
.

The contribution to the orbital variation due to the to-
tal mass loss Ṁ = Ṁc + Ṁp is given by (Damour & Taylor
1991):

Ṗ Ṁ
b = 2

Ṁ
Mt

Pb < 0.2 fs s−1, (10)

which is about 20 times smaller than the current uncertainty
in the measurement of Ṗ xs

b .

4.1.2 Tidal orbital decay

We now calculate the orbital decay caused by tides. From
eqs. (3.15) and (3.19) in Smarr & Blandford (1976), we de-
rive the following expression for ṖT

b :

ṖT
b =

kΩc

3πq(q + 1)

(

RcPb sin i
xc

)2 1
τs

. (11)

Unlike the expressions in eq. (3.19), this equation is exact
because it relates the synchronisation timescale τs (which
describes the change in the companion angular velocity
Ωc, τs = −Ωc/Ω̇c) to the timescale associated with the
change in the orbital period (τp = Pb/Ṗ

T
b ) assuming only

conservation of the angular momentum. In this expression
k ≡ Ic/(McR

2
c), where Ic is the WD moment of inertia.

White dwarfs (particularly those with a mass much below
the Chandrasekhar limit) are sustained by the degeneracy
pressure of non-relativistic electrons and can be well approx-

c© 0000 RAS, MNRAS 000, 000–000

Freire et al. (2012) & Antoniadis et al. (2012)

White dwarf mass from photometry + spectroscopy

Orbital period decay from pulsar timing

See Freire et al. (2012) & Antoniadis et al. (2012)
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Ṗ xs
b = Ṗ Ṁ

b + ṖT
b + ṖD

b + Ṗ Ġ
b

ṖD
b � −2π nbT⊙mc

q

q + 1
κD(spsr − scomp)

2
spsr,comp � �/Mpsr,compc

2

The “excess” orbital period decay:

Dipolar Gravitational Waves and MOND
 Constraining dipolar gravitational waves

mass loss tides dipolar gravitational 
waves

variation of 
gravitational constant

where
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Ṗ xs
b = Ṗ Ṁ

b + ṖT
b + ṖD

b + Ṗ Ġ
b

ṖD
b � −2π nbT⊙mc

q

q + 1
κD(spsr − scomp)

2
spsr,comp � �/Mpsr,compc

2

The “excess” orbital period decay:

Dipolar Gravitational Waves and MOND
 Constraining dipolar gravitational waves

mass loss tides dipolar gravitational 
waves

variation of 
gravitational constant

spsr �= scomp
Neutron star + white dwarf binaries 
have very different self-gravity

where
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ṖD
b Ṗ Ġ

b

Dipolar Gravitational Waves and MOND
 Constraining dipolar gravitational waves

The most stringent test of scalar-tensor gravity. 11

Figure 6. Limits on Ġ/G and κD derived from the measurements
of Ṗ xs

b of PSR J1738+0333 and PSR J0437−4715. The inner blue
contour level includes 68.3% and the outer contour level 95.4%
of all probability. At the origin of coordinates, general relativity
is well within the inner contour and close to the peak of proba-
bility density. The gray band includes regions consistent with the
measured value and 1-σ uncertainty of Ġ/G from Lunar Laser
Ranging (LLR). Generally only the upper half of the diagram
has physical meaning, as the radiation of dipolar GWs must nec-
essarily make the system lose orbital energy.

imated by a polytropic sphere with n = 1.5. For such stars,
we have k = 0.2 (Motz 1952).

The only unknown parameters in this expression are
Ωc and τs. If τs is much smaller than the characteristic age
of the pulsar τc = 4.1Gyr, then the WD rotation is already
synchronised with the orbit (Ωc = nb) and there are no tidal
effects at all. If, on the other hand, τs > τc, then Ωc can be
much larger, but it must still be smaller than the break-up
angular velocity Ωc <

√

GMc/R3
c = 0.038 rad s−1. These

conditions for Ωc and τs yield ṖT
b < 1.4 fs s−1. Thus, even

if the WD were rotating near break-up velocity, ṖT
b would

still be smaller than the uncertainty in the measurement
of Ṗ xs

b . We note, however, that the progenitor of the WD
was very likely synchronised with the orbit. This implies
that, when the WD formed, its rotational frequency was
within one order of magnitude of the orbital frequency, i.e.,
Ωc ! 2×10−3 rad s−1 (for the reasoning, see, e.g., Appendix
B2.2 of Bassa et al. (2006)).

4.2 Test of GR and generic tests of alternative

gravity theories

The smallness of the classical terms implies that the mea-
surement of Ṗ xs

b (eq. (7)) is a direct test of GR. Unlike

many alternative theories of gravity, GR predicts Ṗ Ġ
b = 0,

ṖD
b = 0 and therefore Ṗ xs

b = 0. As discussed in Sec-
tion 3.3, this is consistent with observations, which means
that GR passes the test posed by the measurement of Ṗ xs

b for
PSR J1738+0333. In this respect PSR J1738+0333 consti-
tutes a verification of GR’s quadrupole formula with a pre-
cision of about 15% at the 1-σ level. In view of more strin-
gent tests with other binary pulsars (Kramer et al. 2006;
Weisberg, Nice & Taylor 2010) this result by itself does not

seem particularly interesting. However, the large difference
in the compactness of the two components of this binary
system makes PSR J1738+0333 a remarkable laboratory for
alternative gravity theories, in particular those which predict
the emission of dipolar gravitational radiation. In Sections
5 and 6, we will confront our observations with two specific
classes of gravity theories. In the present section, we follow a
more generic approach, valid for gravity theories where non-
perturbative strong-field effects are absent and higher-order
contributions in powers of the gravitational binding energies
of the bodies can be neglected, at least to a point where one
does not care about multiplicative factors <

∼ 2. As an exam-
ple, the well known Jordan-Fierz-Brans-Dicke scalar-tensor
theory falls into this group.

Under the assumptions above, we can write for the
change in the orbital period caused by dipolar gravitational
radiation damping in a low-eccentricity binary pulsar system

ṖD
b # −2π nbT"mc

q
q + 1

κDS2 +O
(

s3p,c
)

, (12)

where S = sp−sc is the body-dependent term which is given
by the difference in the “sensitivities” of the pulsar, sp, and
the companion, sc [see Will (1993) for the definition of sp,c].
The quantity κD is a body-independent constant that quan-
tifies the dipolar self-gravity contribution, and takes differ-
ent values for different theories of gravity.3 For the purpose
of this section, we have neglected higher-order corrections
in powers of the sensitivities in the equation above (They
actually vanish in the Jordan-Fierz-Brans-Dicke case). The
full non-linearity will be taken into account in Sections 5
and 6 (anticipating on the notation defined there, the terms
∝ s3p,c are negligible when the absolute value of the non-
linear matter-scalar coupling constant, |β0|, is significantly
smaller than 2).

The value of sp,c depends on the theory of gravity, the
exact form of the equation of state and the mass of the
pulsar; for a Mp = 1.4M" neutron star, it is generally of
the order of 0.15, the value we use in our calculations. For
an asymmetric system like PSR J1738+0333, the sensitivity
of the companion WD has a negligible value: in the post-
Newtonian limit, it is given by ε/Mcc

2 ∼ 10−4, where ε
is the gravitational binding energy of the WD (Will 2006).
Therefore, S = sp − sc # sp &= 0, which implies that if
κD &= 0, then there must be emission of dipolar GWs, and
an associated orbital decay according to eq. (12). In a double
neutron star system we would have sp ≈ sc and therefore
S ≈ 0, which means that we should observe ṖD

b ≈ 0 even if
κD &= 0. It is for this reason that, despite the low relative
precision of the radiative test in PSR J1738+0333, it rep-
resents such a powerful constraint on alternative theories
of gravity (see, e.g. Eardley 1975; Bhat, Bailes & Verbiest
2008). Apart from this, the use of optical data is very im-
portant because they provide estimates of q and mc that are
free of explicit strong field effects — unlike in the case of the
binary pulsar PSR B1913+16 (see Weisberg, Nice & Taylor
2010), or for many of the parameters of the double pulsar
(Kramer et al. 2006).

3 In general scalar-tensor theories of gravity, we have κD =
2η2

(

1− γPPN
)−1

, where η ≡ 4βPPN−γPPN−3 is the Nordtvedt
parameter, a combination of PPN parameters related to the vio-
lation of the strong equivalence principle.

c© 0000 RAS, MNRAS 000, 000–000

are degenerateand

Combining data from PSRs J1738+0333 and J0437-4715 breaks the degeneracy

Freire et al. (2012) and, also, Lazaridis et al. (2009)

Lunar Laser Ranging
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lnA(ϕ)− lnA(ϕ0) = α0(ϕ− ϕ0) +
1

2
β0(ϕ− ϕ0)

2

G̃AB ≡ G∗A
2(ϕ0) · (1 + αAαB)

γAB ≡ 1− 2
αAαB

1 + αAαB

βA
BC ≡ 1 +

1

2

βAαBαC

(1 + αAαB)(1 + αAαC)

g̃µν ≡ A2(ϕ)gµν

Dipolar Gravitational Waves and MOND
 Constraining tensor-scalar theories

Freire et al. (2012)

Associated metric

A general tensor scalar field
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The last contribution to Ṗ xs
b comes from a possible

contribution to the orbital change by a varying gravita-

tional constant (Ṗ Ġ
b in eq. (8)). In the worst case, ṖD

b

and Ṗ Ġ
b could both be large (in violation of GR) but just

happen to cancel each other in the PSR J1738+0333 sys-
tem because of different signs. To disentangle these effects
there are two methods. First, one can use the best cur-
rent limits from tests in the Solar System, notably Lunar
Laser Ranging (LLR), which yields Ġ/G = (−0.7 ± 3.8) ×
10−13 yr−1 (Hofmann, Müller & Biskupek 2010), and obtain
for PSR J1738+0333 a (conservative) upper limit of

Ṗ Ġ
b = −2

Ġ
G
Pb = (+0.14± 0.74) fs s−1, (13)

(Damour, Gibbons & Taylor 1988; Damour & Taylor 1991).

Therefore, ṖD
b = Ṗ xs

b − Ṗ Ġ
b = 1.9+3.8

−3.7 fs s
−1, which yields, for

a typical sensitivity sp = 0.15

κD = (−0.8± 1.6) × 10−4 , (14)

a limit that is a factor of eight more stringent than the limit
from PSR J1012+5307 (Lazaridis et al. 2009).

The second method, developed in Lazaridis et al.
(2009), combines two binary pulsar systems with different
orbital periods. The method is based on the fact that a wide
orbit is more sensitive to a change in the gravitational con-
stant but less affected by the emission of dipolar GWs, in
comparison to a more compact orbit. If we combine the Ṗ xs

b

of PSR J1738+0333 with that of a binary pulsar with a
longer orbital period we obtain a simultaneous test for κD

and Ġ.
When calculating Ṗ Ġ

b for a combined limit on κD and
Ġ based on two binary pulsars, we need to account for mass
variations in compact stars as a result of a changing gravita-
tional constant. Otherwise our limit on Ġ will be too tight
(Nordtvedt 1990). As a first approximation, that only ac-
counts for the influence of the local value of G, we can use
eq. (18) in Nordtvedt (1990):

Ṗ Ġ
b = −2

Ġ
G

(

1−
2q + 3
2q + 2

sp −
3q + 2
2q + 2

sc

)

Pb . (15)

As in eq. (12), the contribution from the sensitivity of
the white-dwarf companion, sc, can be neglected. For
PSR J1738+0333, the correction factor due to the sensitiv-
ities (i.e., the parenthesis on the right hand side of eq (15))
is about 0.85.

As in Lazaridis et al. (2009), we use the Ṗ xs
b of

PSR J0437−4715 (Deller et al. 2008; Verbiest et al. 2008)
to complement our Ṗ xs

b measurement (see eq. (7)).
PSR J0437−4715 has a slightly higher mass than
PSR J1738+0333, and we will account for this in the sensi-
tivity by having sp scale proportional to the mass, as sug-
gested by eq. (B.3) of Damour & Esposito-Farèse (1992).
The joint probability density function for Ġ/G and κD is
displayed in Fig. 6. At the origin of coordinates, GR is well
within the inner 68% contour and close to the peak of prob-
ability density, i.e., it is consistent with the experimental
results from these two binaries. Marginalizing this probabil-
ity distribution function, we obtain

Ġ/G = (−0.6± 1.6) × 10−12 yr−1

= (−0.009 ± 0.022)H0, (16)

κD = (−0.3± 2.0) × 10−4, (17)
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Figure 7. Solar-system and binary pulsar 1-σ constraints on the
matter-scalar coupling constants α0 and β0. Note that a log-
arithmic scale is used for the vertical axis |α0|, i.e., that GR
(α0 = β0 = 0) is sent at an infinite distance down this axis.
LLR stands for lunar laser ranging, Cassini for the measure-
ment of a Shapiro time-delay variation in the Solar System, and
SEP for tests of the strong equivalence principle using a set
of neutron star-white dwarf low-eccentricity binaries (see text).
The allowed region is shaded, and it includes general relativity.
PSR J1738+0333 is the most constraining binary pulsar, although
the Cassini bound is still better for a finite range of quadratic cou-
pling β0.

where H0 is Hubble’s constant (Riess et al. 2009) and
the uncertainties are 1-σ. The Ṗ xs

b measurement of
PSR J0437−4715 is mostly responsible for the limit on
Ġ/G, and it has therefore not improved since Lazaridis et al.
(2009). The Ṗ xs

b measurement of PSR J1738+0333 is mostly
responsible for the limit on κD, which has improved by a fac-
tor of ∼ 6 since Lazaridis et al. (2009). Although the limit
on Ġ/G derived from binary pulsar experiments is one order
of magnitude less restrictive than that derived from LLR, it
is of interest because it represents an independent test.

The analysis presented in this section is restricted to
gravity theories that do not develop nonperturbative strong-
field effects in neutron stars. This assumption is well justi-
fied for PSR J1738+0333, since such effects do not seem to
exist in other binary pulsars with similar masses, or even
with a higher mass like in the case of PSR J1012+5307
(Lazaridis et al. 2009). Even when non-perturbative effects
do develop, we will show below that the higher-order correc-
tions entering eq. (12) do not change the conclusions quali-
tatively.
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take into account when calculating the constraints on the
matter-scalar coupling constants α0 and β0.

Figure 7 shows that scalar-tensor theories with a
quadratic matter-scalar coupling β0 < −5 are forbid-
den, whatever the value of the linear coupling α0. This is
due to the nonperturbative strong-field effects studied in
Damour & Esposito-Farèse (1993, 1996b). For β0 > −5,
the limits on α0 are now derived either from the Cassini
experiment or from PSR J1738+0333. For positive β0

Solar System tests used to provide the best constraints
on α0, but this has recently changed: PSR J1141−6545
(Bhat, Bailes & Verbiest 2008) is more constraining than
the Solar System tests for β ! 7 and PSR J1738+0333 is now
the most constraining of all for β0 > 0.7. The same is true for
the −4.8 < β0 < −2.4 range. The special case β0 = 0 (the
Jordan-Fierz-Brans-Dicke theory of gravity) is in the region
where the Cassini experiment is still more sensitive. Our 1-σ
pulsar limit α2

0 < 2× 10−5 converts into ωBD > 25000. This
is within a factor of 1.7 of the precision of the Cassini exper-
iment. We obtain the same constraint in the massive Brans-
Dicke theories recently considered in Alsing et al. (2011)
when the scalar’s mass msc2 < h/Pb = 1.35 × 10−19 eV
(where h is Planck’s constant), and no longer any signifi-
cant constraint for larger scalar masses, consistently with
Fig. 1 of that reference.

Overall, PSR J1738+0333 provides significantly better
constraints than the previous best binary pulsar experiment,
PSR J1141−6545 (Fig. 7). If the limits obtained with that
or other systems improve in the near future that would rep-
resent an important confirmation of the results obtained in
this paper.

6 CONSTRAINTS ON TEVES-LIKE THEORIES

A tensor-vector-scalar (TeVeS) theory of gravity has been
proposed by Bekenstein (2004) to account for galaxy rota-
tion curves and weak lensing without the need for dark mat-
ter. This is a relativistic realization of the modified Newto-
nian dynamics (MOND) proposal (Milgrom 1983), which in-
troduces a fundamental acceleration scale a0 ≈ 10−10 ms−2

(not to be confused with the matter-scalar coupling con-
stant α0 defined above). One of the difficulties is to be able
to predict significant deviations from Newtonian gravity at
large distances, while being consistent with Solar-System
and binary-pulsar tests of GR at smaller scales (Sanders
1997; Bruneton & Esposito-Farèse 2007). Indeed, the scalar-
field kinetic term of TeVeS is an unknown nonlinear func-
tion, which must take different forms at small and large
distances. This function can have a natural shape only if
|α0| >

√

r"U/rMOND ≈ 0.05, where r"U is the orbital radius

of Uranus and rMOND =
√

GM"/a0 ≈ 7000AU ≈ 0.1 lt-yr,
otherwise the model would predict anomalies too large to be
consistent with planetary ephemerides (Laskar et al. 2009).
Below this value, the function needs to be tuned, and even
fine-tuned for much smaller |α0|, and it merely cannot exist
any longer if |α0| < r"U/rMOND ≈ 0.003 (it would need to
be bi-valued). Using binary pulsars to constrain the matter-
scalar coupling constant α0 within TeVeS is thus particularly
interesting.

In the following, we shall not take into account all
the subtle details of TeVeS, which are not relevant for

LLR
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J1141–6545

B1534+12

B1913+16

J0737–3039

J1738+0333

10

−6 −4 −2 0 2 4 6
0

0|

100

Tuned

TeVeS

Inconsistent

TeVeS

10

10

10

Figure 8. Similar theory plane as in Fig. 7, but now for the (non-
conformal) matter-scalar coupling described in the text, general-
izing the TeVeS model. Above the upper horizontal dashed line,
the nonlinear kinetic term of the scalar field may be a natural
function; between the two dashed lines, this function needs to
be tuned; and below the lower dashed line, it cannot exist any
longer. The allowed region is shaded. It excludes general relativ-
ity (α0 = β0 = 0) because such models are built to predict modi-
fied Newtonian dynamics (MOND) at large distances. Note that
binary pulsars are more constraining than Solar-System tests for
this class of models (and that the Cassini bound of Fig. 7 does not
exist any longer here). For a generic nonzero β0, PSR J1738+0333
is again the most constraining binary pulsar, while for β0 ≈ 0,
the magnitude of |α0| is bounded by the J0737−3039 system.

our conclusions. In particular, Bekenstein introduced spe-
cific scalar-vector couplings to avoid superluminal propaga-
tion, but this is actually not necessary to respect causal-
ity (Bruneton 2007; Bruneton & Esposito-Farèse 2007;
Babichev, Mukhanov & Vikman 2008). We will thus focus
on the small-distance behavior of this theory, and assume
that the scalar-field kinetic term takes its standard form
in this limit. We will also neglect the contributions of the
vector field to the dynamics and the gravitational radiation,
because they depend again on some coupling constant which
can be chosen small enough. Let us just underline that if the
vector field carries away some significant amount of energy,
then binary-pulsar data are even more constraining than
what we obtain below. Neglecting these contributions is thus
a conservative choice. To simplify, we will here assume that
the vector field of TeVeS is aligned with the proper time
direction of matter.

The crucial difference of TeVeS, with respect to the
standard scalar-tensor theories of Section 5, is the expres-
sion of the physical metric g̃µν to which matter is universally
coupled. In the rest frame of matter, it reads g̃00 = A2(ϕ)g00
for the time component, but g̃ij = A−2(ϕ)gij for the spatial
ones. The actual model constructed in Bekenstein (2004)
assumes A(ϕ) = exp(α0ϕ), but we shall here generalize it
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|α̂3| < 5.5× 10−20

|∆| < 4.6× 10−3P 2
orb/e

2

P 2
orb/(eP ) P 1/3

orb /e

Pulsar + WD in low eccentricity wide orbit

Test strong equivalence principle
Test violation of momentum conservation and preferred frame-effects

More Tests of Gravity?
 SEP violation, preferred-frame effects

statistical: see, e.g., Gonzalez et al. 2011, Stairs et al. 2005
individual system: see, e.g., Wex & Kramer 2007
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Neutron Star Equation-of-State
 Probing the upper mass limit of neutron stars

PSR B1957+20

PSR J1614-2230

Lattimer 2007

van Kerkwijk, Breton
& Kulkarni (2011)

Demorest et al. (2010)
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The Future Is Bright
 More pulsars, more photons

More pulsars: What if we know “all” pulsars from the Galaxy?
More binaries = many new oddballs
Not clear how this translates for gravity tests

More photons:
Accurate parallax for large number of pulsars
Improved timing on existing systems
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Conclusions
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PSR + WD

spin-orbit coupling

dipolar GW

tensor-scalar

TeVeS/MOND

NS EoS

SEP

preferred-frame effects
(individual)

preferred-frame effects
(statistical)

variation of G

consistencies of theories

relativistic effects

Binary pulsars
• Excellent tools to test gravity
• Probe a different gravitational field regime
• System diversity = complementarity

PSR + BD*
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