Searches for gravitational waves associated with gamma-ray bursts

Michał Wąs for the LIGO Scientific Collaboration and the Virgo Collaboration

Albert Einstein Institute - Hannover

GWPAW 2012

Outline Gamma-ray bursts Astrophysics GW emission GW searches Methodology Results Prospects Summary

Credit: Bill Saxton, NRAO/AUI/NSF

Gamma-ray bursts

- Observational definition \rightarrow a burst of γ -rays (10 keV 1 MeV)
- Discovered in the 70's by nuclear bomb test surveillance satellites

- T₉₀ duration of 90% of photon counts (~ 15 – 300 keV)
- Two observational populations:
 - ► short-hard GRBs T₉₀ ≤ 2 s spectrum peaks at higher energy
 - ► long-soft GRBs T₉₀ ≥ 2 s spectrum peaks at lower energy

Gamma-ray burst models

credit: Ute Kraus

Long GRBs

- ⇒ Massive rapidly spinning star collapse and explosion
 - Short GRBs
- ⇒ Coalescence of a neutron star and a compact object
 - Small fraction is actually neutron star quakes (≤ 15%)
 - Both cases: asymmetric, compact, relativistic
 ⇒ good GW source
 - Measured gamma emission: $\sim 10^{51}\,erg = 10^{-3}\,M_\odot c^2$
 - Problem: typical distance $\sim 10 \, \text{Gpc}$ but some closer

EM emission - standard fireball model

What might we learn from GW-GRB observation

Models for short/long GRBs remain uncertain

Iong GRBs

- localization in star forming regions
- associations with supernova
- but also some long GRBs with strong limits on supernova (< 10⁻³ typical luminosity)
- short GRBs
 - Iocalization in galaxies with old stellar population
 - lack of supernova
 - observational confirmation weaker than for long GRBs

Potential lessons from GW-GRB detection

- Confirm the binary coalescence model for short GRBs
- Learn more about progenitor of long GRBs
 - black hole or magnetar?
- Precise measurement of GW speed, $\Delta v/c \sim 10^{-16}$
- Measure of Hubble's constant, distance \leftrightarrow redshift relation

Astrophysical inputs & analysis strategy

Goal: Find GW associated with GRBs

- What to look for?
 - GW signal waveform
 - GW signal amplitude
 - GW signal polarization
- Where to look for?
 - GRB sky localization
 - Timing between GRB trigger and GW trigger
 Understand both EM and GW emission
- Is it worthwhile to search?
 - GRB progenitors distance distribution
 - Is it better than blind (all-sky, all-time) search?

GW emission - coalescence scenario

Binary system of two compact objects (NSNS or NSBH)

- Lose energy by GW radiation
- $\bullet\,$ GW emission enters sensitive band $(\gtrsim 50\,\text{Hz}) < 50\,\text{s}$ before coalescence
- NS needs to be disrupted → M_{BH} < 20 M_☉ → negligible GW SNR at merger, ringdown

GW emission - coalescence scenario

- $\bullet\,$ GRB central engine formed in \lesssim 1 s
- γ -ray emission delayed by $\lesssim T_{90} \sim$ 2 s
- \Rightarrow coalescence time [-5, 1] s prior to GRB observation
 - GRB observed \rightarrow rotation axis points at observer
- ⇒ GW well known and circularly polarized up to inclination of 60° → loose constraint (jet opening angle $\lesssim 30^{\circ}$)

- Magnetar central engine / Proto neutron star
 - bar mode instability in the star (Shibata et al., 2003)
 - neutron star core fragmentation (Davies et al., 2002; Kobayashi and Mészáros, 2003)
- Black hole and accretion disk
 - Disk fragmentation (Piro and Pfahl, 2007)
 - Disk precession (Romero et al., 2010)
- ⇒ circular polarization along rotation axis
- \Rightarrow Emitted GW energy $\lesssim 10^{-2} \, M_\odot c^2$

Emission paths we do not look for yet

- long GW bursts (10 1000 s)
 - secular instability in proto neutron star
 - R-modes
 - accretion disk instability
 - ⇒ search under-development (Thrane et al., 2011)
- Other emission mechanism but no prospects for extra-galactic reach
 - Out of frequency band (Neutrino, normal modes, ...)
 - Too small amplitude (Core bounce, SASI, ...)

Two complementary searches

- Broad in scope covers most possibilities
 - "burst" searching method any signal shapes
 - $\blacktriangleright\,$ Limited to 60 500 Hz band, \lesssim 1 s duration
 - Assumes circular polarization
 - ► Loose time coincidence between γ -rays and GW $T_{\text{GW}} T_{\gamma} \in [-600, \max(T_{90}, 60)]$ s
- Focused on short GRBs binary coalesence
 - Inspiral waveform templates, NS-NS and NS-BH
 - ► Tight time coincidence between γ -rays and GW inspiral end time $T_{\text{GW, coalescene}} T_{\gamma} \in [-5, 1]$ s
 - $\blacktriangleright\,$ More sensitive to inspiral signals by factor ~ 2
- GW data combined coherently in both searches
 - ► Novel for compact binary coalescence searches (Harry and Fairhurst, 2011)
- (Abadie et al., 2012b)
- A search for longer (\sim 10 100 s) GW transients under-construction (secular instability, R-modes, ...)

Excess wrt Gaussian noise \rightarrow Time frequency maps

- Burst search
 - Concentrate signal energy in a small number of pixels
 - Sum energy over clusters of "loud" pixels

⇒ Ranking statistic

Excess wrt Gaussian noise \rightarrow match with templates

- Coalescence search
 - Adjust template time, parameters (masses, ...)
 - Sum coherently energy using waveform template
 - ► Check that residual is consistent with Gaussian noise (χ²)

⇒ Ranking statistic

LSC

🗖 (((0))) VIRGD

GRB triggered GW burst search

Known position and time

- Reduced time \rightarrow reduced background
- ► Position → simplify coherent analysis
 - time delays between detectors constrained by sky location box
 - $\sim 20\%$ sensitivity improvement (Wąs et al., 2012)
- \Rightarrow Better sensitivity by a factor \sim 2 wrt to all-sky/all-time search
- On-source data
 - Search for potential GW events
- Off-source data, time slides
 - Measurement of event background distribution
- Result of search
 - Background probability of most interesting on-source event
- Repeated independently for each GRB

Major gamma-ray burst detectors

• Swift (launched 2004)

- BAT coded aperture telescope
- 15-150 keV
- « 1 degree accuracy
- Field of view ~ 10% of sky
- Fermi (launched 2008)
 - GBM multiple thin disk scintillators
 - localization by comparing fluxes on scintillators
 - \sim 5 degree error (statistic+systematic)
 - Field of view ~ 70% of sky

• IPN - Third Interplanetary network (since 1990)

- Field of view \sim 100% of sky
- Localization by time of arrival triangulation
 - MESSENGER (Mercury)
 - Mars Odyssey
 - Konus-Wind (up to 6 light seconds)
- error from \ll 1 degree to fraction of sky
- Effective full sky coverage

(Barthelmy et al., 2005)

(Meegan et al., 2009)

⁽Hurley et al., 2009)

Data sample

• July 2009 – October 2010

Network of three GW detectors

- LIGO Hanford
- LIGO Livingston
- Virgo, Italy
- 404 GRBs observed by γ-ray satellites Gamma-ray burst Coordinates Network
 - Swift
 - Fermi
 - IPN in most cases not distributed
- 154 GRBs with good data from at least two GW detectors
- includes 26 short GRBs lenient classification

Binary coalescence search

Event distribution consistent with background

GW bursts search expected - - expected 10^{2} data data lower bound data upper bound 10^{1} number of GRBs number of GRBs 10^{1} 10^{0} 10^{0} 10^{-3} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{-2} 10^{-1} 10^{-4} 10^{0} FAP value FAP value 25% background probability 8% background probability

45

GW burst non detection consequences GRB progenitor distance exclusion

Global interpretation & Prospects

- Prospects for advanced detectors (Abadie et al., 2012b)
 - ×10 sensitivity, ×5 number of GRBs
 - Iong GRBs, possible if optimistic GW emission
 - short GRBs, quite possible, especially if significant NS-BH fraction

GRB070201 / GRB051103

Significant previous non detections

- Short GRBs,
 - GRB070201 sky location overlap with M31, (Andromeda 770 kpc)
 - GRB051103 sky location overlap with M81 (~ 3.6 Mpc)
- no GW found
 - ⇒ Binary coalescence in M31 excluded at >99% confidence level (Abbott et al., 2008)
 - ⇒ Binary coalescence in M81 excluded at 98% confidence level (Abadie et al., 2012a)
- Compatible with
 - Neutron star quake in M31/M81 (Soft gamma-repeater)
 - Coalescence in galaxy behind M31/M81

GRB051103 error box (Hurley et al., 2010)

Will there be GRB triggers in 2015-2020?

- Typical mission operation time 10-15 years
 - Swift 2004
 - 3 year mission
 - likely to have a major failure
 - Fermi 2008
 - should still be flying
 - Poor localization \rightarrow no multi-wavelength followup
 - InterPlanetary Network bad prospects
 - Single person collecting the data about to retire
 - No plans for γ -ray detector on new interplanetary satellites
- Possible future no approved missions, > 2017
 - SVOM
 - · Larger Swift focused on high redshift GRBs
 - FOV 15% of the sky
 - Lobster
 - X-ray focusing telescope 0.1 3 keV
 - modules with 30 \times 30 degrees FOV
 - mission with 1, 3 or a dozen such modules

• Full sky GRB coverage is not granted!

Lobster

Relevance of triggered search vs all-sky search

- Triggered search misses progenitors beaming away from Earth
- Triggered search is more sensitive

- \Rightarrow interesting even for small jet opening angles
- Reference: fraction found by all-sky search with γ -ray counterpart
- ⇒ Two approaches see (mostly) independent events

Summary

- Long and short GRBs progenitors may produce large amounts of GWs
- No associated GW detection to date
- Some relevant exclusions: GRB070201, GRB051103
- $\bullet\,$ Good prospects for first detection with advanced detectors $\gtrsim 2015\,$
- Joint GW- γ observation should determine the nature of GRB central engine
- Full sky γ-ray coverage essential
- Extending the scope in the meantime
 - IPN network full sky coverage, non automated sky localization
 - longer GW bursts
 - sub-threshold GRB triggers

Michał Wąs (G1200491)

References

Abadie, J. et al. (2012a). Implications for the Origin Of GRB 051103 From LIGO Observations. arXiv:1201.4413. LIGO-P1000097.

Abadie, J. et al. (2012b). Search for gravitational waves associated with gamma-ray bursts during LIGO science run 6 and Virgo science run 2 and 3. arXiv:1205.2216.

Abbott, B. P. et al. (2008). Implications for the origin of GRB 070201 from LIGO observations. Astrophys. J, 681:1419.

Barthelmy, S. D. et al. (2005). The Burst Alert Telescope (BAT) on the Swift MIDEX mission. Space Sci. Rev., 120:143.

Davies, M. B., King, A., Rosswog, S., and Wynn, G. (2002). Gamma-ray bursts, supernova kicks, and gravitational radiation. Astrophys. J. Lett., 579:L63.

Harry, I. W. and Fairhurst, S. (2011). Targeted coherent search for gravitational waves from compact binary coalescences. Phys. Rev. D, 83:084002.

Hurley, H. et al. (2010). A new analysis of the short-duration, hard-spectrum GRB 051103, a possible extragalactic soft gamma repeater giant flare. Mon. Not. R. Astron. Soc., 403:342.

Hurley, K. et al. (2009). The status and future of the third interplanetary network. AIP Conf. Proc, 1133:55.

Kobayashi, S. and Mészáros, P. (2003). Gravitational radiation from gamma-ray burst progenitors. Astrophys. J., 589:861.

Mazets, E. P. et al. (2008). A giant flare from a soft gamma repeater in the andromeda galaxy (m31). Astrophys. J., 680:545.

Meegan, C. et al. (2009). The Fermi gamma-ray burst monitor. Astrophys. J., 702:791.

Paciesas, W. S. et al. (1999). The fourth batse gamma-ray burst catalog (revised). Astrophys. J. Suppl. Ser., 122:465.

Piro, A. L. and Pfahl, E. (2007). Fragmentation of collapsar disks and the production of gravitational waves. Astrophys. J., 658:1173.

Romero, G. E., Reynoso, M. M., and Christiansen, H. R. (2010). Gravitational radiation from precessing accretion disks in gamma-ray bursts. Astron. Astrophys., 524:A4.

Shibata, M., Shigeyuki, K., and Yoshiharu, E. (2003). Dynamical bar-mode instability of differentially rotating stars: effects of equations of state and velocity profiles. Mon. Not. R. Astron. Soc., 343:619.

Thrane, E. et al. (2011). Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers. Phys. Rev. D, 83:083004.

Was, M. et al. (2012). Performance of externally triggered gravitational-wave burst search with X-Pipeline. arXiv:1201.5599. LIGO-P1100135.

