

Discovery of gamma-ray pulsars in Fermi-LAT data

with new methods inspired from gravitational-wave astronomy

Holger J. Pletsch

Max Planck Institute for Gravitational Physics (Albert Einstein Institute)

Executive summary

"Electromagnetic pulsars":

- Rapidly spinning & highly magnetized neutron stars.
- Lighthouse effect, beams of EM radiation

→ Pulsations observable in radio, optical, X-rays, and gamma-rays.

"Gravitational-wave pulsars":

Fast spinning neutron star, e.g. with a tiny mountain.

Executive summary

"Electromagnetic pulsars":

- Rapidly spinning & highly magnetized neutron stars.
- Lighthouse effect, beams of EM radiation

→ Pulsations observable in radio, optical, X-rays, and gamma-rays.

"Gravitational-wave pulsars":

Fast spinning neutron star, e.g. with a tiny mountain.

Blind searches for gamma-ray pulsars

Multi-messenger

- No prior knowledge of pulsar parameters.

BUT:

- Same parameter space as GW pulsar searches.
- Similar data time span of *Fermi*-LAT and LIGO/Virgo.
- In both cases: signals are extremely weak.

Executive summary

"Electromagnetic pulsars":

- Rapidly spinning & highly magnetized neutron stars.
- Lighthouse effect, beams of EM radiation

→ Pulsations observable in radio, optical, X-rays, and gamma-rays.

"Gravitational-wave pulsars":

Fast spinning neutron star, e.g. with a tiny mountain.

Blind searches for gamma-ray pulsars

Multi-messenger

- No prior knowledge of pulsar parameters.

BUT:

- Same parameter space as GW pulsar searches.
- Similar data time span of *Fermi*-LAT and LIGO/Virgo.
- In both cases: signals are extremely weak.

- Apply GW data-analysis "technology" to EM data
- to enhance search sensitivity
- to increase detections
- Discovery of several new pulsars
- → Significant population increase (~30%)

A radio-quiet gamma-ray pulsar

Pulsar's orientation such that:

- radio beam does not cross line of sight,
- but only gamma-ray emission does.

The Fermi Gamma-ray Space (LAT) or Fermi Gamma-ray Space Telescope

- *Fermi* launched June 11, 2008. Expected lifetime: 10 years.
- The Large Area Telescope (LAT) on board *Fermi*:
 - Pair production telescope with silicon tracker, calorimeter, and segmented anti-coincidence detector.
 - Energy range: 20 MeV to > 300 GeV.
 - Continuous sky survey mode of operation, entire sky captured every 3 hrs, survey started August 8, 2008.
 - Big improvements in area, FOV, directional precision, background reduction, compared to precursor EGRET.

Image Credit: NASA

Energy: Calorimeter

LAT all-sky map

Fermi-LAT Second Source Catalog (2FGL) based on two years: 1873 sources.

Among these **576** unidentified, not associated with counterparts at other wavelengths.

→ Contain unknown gamma-ray pulsars?

Detecting pulsars with Fermi

BTW, **before** *Fermi*: < 10 gamma-ray pulsars

Now: > **100** pulsars identified with the *Fermi* LAT in **3 different ways** (so far with about equal success rate):

Indirect ways (radio-loud pulsars):

- 1) Using ephemeris of pulsars known from radio or X-ray
 - Assigning phases to gamma-ray photons based on known timing model

2) Radio pulsar searches at sky positions of LAT unidentified sources

- From radio pulsar finding assign again phases to gamma-ray photons

Direct way (the only way for radio-quiet systems):

- **3)** Blind searches for pulsars directly in LAT data
 - Fermi is the first instrument to enable us blind-search discoveries
 - Very successful in finding young pulsars, no millisecond pulsar yet

"Pulsar-like" catalog sources

The blind-search problem

- In one year: LAT detects ~1000 photons from a typical pulsar
 pulsar rotates at least 10⁸ times around its axis
- For **isolated** systems:

Need to find **rotational phase model** $\Phi(t) = 2\pi (ft + \dot{ft}^2/2)$ with **spin frequency** f and **frequency derivative** \dot{f} , plus a **sky position** to match SSB arrival times t of the photons.

- Signal hypothesis: Arrival times "cluster" near specific "orientations", i.e. $\Phi(t) \mod 2\pi$ deviates from uniformity on interval $[0, 2\pi]$.
- Null hypothesis: photon arrival times are a random process.

Computational constraint

Ideal world: infinite computing power

→ Fully coherent Fourier analysis on a dense 4D template grid

Reality: finite computing resources limit search sensitivity

- → Enormously wide parameter space: fully coherent approach impractical
- → Need: a) more efficient search methods
 - b) more computing power
- → Goal: Maximize sensitivity at fixed computing cost

Computational constraint

Ideal world: infinite computing power

→ Fully coherent Fourier analysis on a dense 4D template grid

Reality: finite computing resources limit search sensitivity

- → Enormously wide parameter space: fully coherent approach impractical
- → Need: a) more efficient search methods
 - b) more computing power
- → Goal: Maximize sensitivity at fixed computing cost

Problem analogous to searches for GW pulsars

→ Solution: use latest GW-pulsar data-analysis "technology"

- Hierarchical search strategies

Schutz & Papa (2000), Papa et al. (2000), Brady & Creighton (2000), Krishnan et al. (2005), Cutler et al. (2005), HJP & Allen (2009), HJP (2011), Cutler (2011), Prix, Shaltev (2012)

- Parameter-space metric to construct efficient search grid

Balasubramanian et al. (1995), Owen (1996), Brady et al. (1998), Jones et al. (2005), Prix (2007), HJP & Allen (2009), HJP (2010)

Search strategy aspects

Hierarchical, 3-staged search scheme:

Discarding unpromising regions in parameter space as early as possible

1. Semi-coherent:

 6-day coherence window slid over 3 years while incoherently combining results.

Total data set (~3 years) 6-day window Sliding coherence window HJP (2011)

2. Coherent follow-up:

- For every **semi-coherent candidate** compute fully coherent Fourier power

over entire data set on significantly refined grid.

3. Including higher signal harmonics:

- Typically pulse profile non-sinusoidal, also Fourier power at harmonics of spin frequency.
- For every **coherent candidate** sum fully coherent power over entire data set from harmonically related frequencies using a further refined grid.

Search strategy aspects

Hierarchical, 3-staged search scheme:

Discarding unpromising regions in parameter space as early as possible

1. Semi-coherent:

 6-day coherence window slid over 3 years while incoherently combining results.

2. Coherent follow-up:

- For every **semi-coherent candidate** compute fully coherent Fourier power over entire data set on significantly refined grid.

3. Including higher signal harmonics:

- Typically pulse profile non-sinusoidal, also Fourier power at harmonics of spin frequency.
- For every **coherent candidate** sum fully coherent power over entire data set from harmonically related frequencies using a further refined grid.

Parameter-space metric to guide grid construction of each stage:

- Geometric tool: measure fractional loss in expected detection statistic for a given signal at a nearby grid point (4D); no sky gridding in previous searches.
- Fully analytic semi-coherent pulsar metric; Ansatz by Brady & Creighton (2000) of "averaging coherent metrics"; using recent solution from HJP & Allen (2009).

Discoveries

Blind-search pulsars discovered during the *Fermi* mission:

doi:10.1088/0004-637X/744/2/105

DISCOVERY OF NINE GAMMA-RAY PULSARS IN *FERMI* LARGE AREA TELESCOPE DATA USING A NEW BLIND SEARCH METHOD

H. J. PLETSCH^{1,3}, L. GUILLEMOT⁴, B. ALLEN^{1,2,3}, M. KRAMER^{4,5}, C. AULBERT^{1,3}, H. FEHRMANN^{1,3}, P. S. RAY⁶, E. D. BARR⁴, A. BELFIORE^{7,8,9}, F. CAMILO¹⁰, P. A. CARAVEO⁹, Ö. ÇELIK^{11,12,13}, D. J. CHAMPION⁴, M. DORMODY⁷, R. P. EATOUGH⁴, E. C. FERRARA¹¹, P. C. C. FREIRE⁴, J. W. T. HESSELS^{14,15}, M. KEITH¹⁶, M. KERR¹⁷, A. DE LUCA^{9,18}, A. G. LYNE⁵, M. MARELLI⁹, M. A. MCLAUGHLIN¹⁹, D. PARENT^{20,23}, S. M. RANSOM²¹, M. RAZZANO^{7,22}, W. REICH⁴, P. M. SAZ PARKINSON⁷, B. W. STAPPERS⁵, AND M. T. WOLFF⁶

Found in first blind survey using ATLAS computing facility at AEI Hannover.

The 1st batch of discoveries

Comparison to known population

- Pulsars from the ATNF catalog (about 1800 radio pulsars)
- Pulsars in binary systems
- Gamma-ray pulsars first found as radio pulsars
- Gamma-ray blind-search pulsars found with previous methods
- Gamma-ray blind-search pulsars found with our new methods

Comparison to known population

Einstein@Home: volunteer supercomputing

- About 300 000 volunteers worldwide
- About 50 000 active computers
- About 500 TFlop/s sustained computing power
- Infrastructure:
 - Built upon BOINC
 - Servers in Milwaukee (USA) and Hannover (Germany)

Three distinct searches for neutron stars:

- 1. Gravitational-wave pulsar search, Data from LIGO, Virgo, GEO600 (since 2005)
- 2. Radio pulsar search,
 - Data from Arecibo, Parkes (since 2009)
- 3. Gamma-ray pulsar search,

Data from Fermi LAT (since 2011)

H J Pletsch

Conclusion

- GW astronomy: signal absence, but efficient data-analysis methods
 ⇒ Useful in related fields: signal-rich EM astronomy.
- Finding radio-quiet gamma-ray pulsars in *Fermi*-LAT data: Search sensitivity computationally bound: analog to blind GW pulsar searches ⇒ Apply GW pulsar search methods
- Pulsar discoveries in Fermi-LAT data:
 - Traditional methods successful during early mission
 (24 within 1 year, but detection rate stagnated since)
 - New search method using 3 years of LAT data: 9+ ⇒ Increased population by ~30%!
- Computational load of survey now moved to Einstein@Home: Hope to find the *first radio-quiet millisecond gamma-ray pulsar*.
 ⇒ Potential important advance in understanding of pulsars.

