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The Problem

Limited number of
possibilities to
accelerate the highest
energy cosmic rays

Which one is right?
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The Solution?

GRB Energy
output: 10%2 ergs
in &~ 1 second
Similar to the
energy density in
ultra-high-energy
cosmic rays

Unknown
progenitors
Detected almost
every day

NASA/Swift
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Mysteries

» Are GRBs the source of high energy cosmic rays?
» What causes GRBs?

» How and where are particles accelerated?
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Testing the Theory

- —

\ Source

Acueleraiur\

Cosmic Neutrino

Opaque Matter
North

Gamma rays:

» Ambiguous
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Testing the Theory

Accelerator

| Proton

Neutrino

Opaque Matter
North

Proton

Gamma rays:
» Ambiguous
Protons:
» GZK horizon (50
Mpc)
» Follow curved
paths
» Time dispersal
Neutrinos:

» Trace cosmic ray
production

> Propagate freely —
no GZK cutoff

» Follow straight
paths

» ... hard to detect



lceCube




Neutrino Telescopes

» Cherenkov light

emitted by
charged
secondaries in
neutrino
interactions

Light imaged by
enormous arrays of
photomultipliers

Deep underground
for background
suppression
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Neutrino Telescopes

Cherenkov light
emitted by
charged
secondaries in
neutrino
interactions

Light imaged by
enormous arrays of
photomultipliers

Deep underground
for background
suppression

South Pole ice
supplies a ready
built detector!
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Digital Optical Modules

Penetrator HV Divider
s
Board
> 25 cm DoM
. . Mainboard
photomultiplier e
Mu-metal
> All-digitial ‘/9”"
readout: In-Situ Deley | [ a4l
Digitization ~—1
» Built-in calibration
. PMT RTV
Instruments . gel

Glass Pressure Housing

12/47



Construction

2.5 km boreholes using hot water
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lceCube

5160 PMTs

1 km? volume

86 strings

17 m PMT-PMT
spacing per string
120 m string
spacing

Angular resolution
~ 1°

Completed
December 2010!

zzzzz

IceCube Lab,
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Challenges

> Naturally
occurring media
— no spec sheet

» No known
neutrino sources
— no standard
candle

» Electronics buried
forever in the ice
— Nno repairs

> Energies above the
reach of
accelerators —
physics unknown
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Neutrino Interactions

Muon Neutrino CC

Neutral Current or Electron Neutrino

Tau Neutrino CC (simulation)
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Physics Reach of IceCube

» Neutrino Point Source
(AGN, GRBs)

» Measurement of
Atmospheric Neutrino
Spectrum (100k
events/year)

» Indirect Dark Matter
Searches

» Measurement of 63
» Direct Observation of v,

» Cross-sections at
ultra-high energies

» Cosmic Ray Measurements

17 /47



lceCube Transient Analysis Programs

» Offline full-sky flare searches Bright neutrino flares on
timescales of ~ days (needs ~ 10 events)

» Offline GRB searches Coincidence between satellite-triggered
GRBs and neutrinos (needs ~ 1 event, this talk)

» Online Optical Followup Triggers optical telescopes
(ROTSE) on interesting neutrino candidates (coincident pairs)

» Online X-Ray/Gamma Followup Triggers SWIFT, MAGIC,
and VERITAS on interesting neutrino candidates (coincident
pairs)
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Satellite Detection

» FERMI GBM (2008-)

» Wide Acceptance, Low Angular Resolution
» SWIFT (2004-)

» Narrower Acceptance, Repointing, High Resolution
> Interplanetary Network

» Array of spacecraft around the Solar System
» Low trigger efficiency
» Strange point spread function

In all, &~ 300 events per year collected by GCN network used in
IceCube analysis.
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Neutrinos from Cosmic Rays

i 10%Es
? 102 Fluxes af Casmic Rays
Usual Model: £ Eo0n o
510k 3 {1 particle per m*~zecond)
» GRBs responsible for - F
. . 10 B
entire extragalatic CR E ‘
flux o
» GRB proton flux F e
. [ \ article per m™=veor]
dominant at the ankle w6 F B
18 F %
(~ 10°° eV) o
» 500-1000 bursts per oF
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» Neutrinos produced in F anie
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S. Swordy, U. Chicago
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Neutrino Production

pty = mp /\
— y+v +p TeV Gammas
— 7T+ n /\ Cosmic Rays?

= ut+ Y @ TeV Neutrinos

—et+ vpt+ve +v,+n

This implies a neutrino spectrum with E Z 100 TeV (set by bulk
Lorentz factor I')
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Model Flavors

» Waxman-Bahcall All extragalactic cosmic rays from GRBs.
Protons diffuse out of shocks at high energies.



Model Flavors

» Waxman-Bahcall All extragalactic cosmic rays from GRBs.
Protons diffuse out of shocks at high energies.

» Magnetic Confinement Models All extragalactic cosmic
rays from GRBs. Protons trapped by magnetic fields — escape
as neutrons (Rachen et al. 1998, Ahlers et al. 2011).
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Model Flavors

» Waxman-Bahcall All extragalactic cosmic rays from GRBs.
Protons diffuse out of shocks at high energies.

» Magnetic Confinement Models All extragalactic cosmic
rays from GRBs. Protons trapped by magnetic fields — escape
as neutrons (Rachen et al. 1998, Ahlers et al. 2011).

» Non-Cosmic Ray Models Fixed fraction of GRB energies in
protons, which do not necessarily escape (Guetta et al. 2004,
Himmer et al. 2012).

24 /47



Searching for Neutrinos from GRBs

Signal:
» Neutrino events

with source at
the GRB position

» Neutrino events
coincident in
time with GRBs

Background:

» Misreconstructed
cosmic ray
muons

» Atmospheric
neutrinos (10~7
57! deg™?)
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Analysis Details

Model-Dependent Analysis:

» Search for neutrinos
with per-burst spectra
from ~ observations

» Live during window of
maximum gamma
emission (Tgo = 30 s)

Model-Independent
Analysis:
» Search for neutrinos at
all triggering energies
> Expanding time
window from 410 s to
+1 day

Weighted Entries / bin
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Backgrounds
Atmospheric neutrinos controlled by space/time coincidence.
These are more of a problem:




Sensitivity

» Optical
telescope-sized
effective area in 10000 ?\‘outﬂérn :emispﬁere
. . orthert m ere ——-—-——-
region of interest 1000 e 1
(N 100 TEV) 100 E
» Northern € 1 1
. ©
Hemisphere can 2 . 1
filter out cosmic H
2 0.1 ]
rays “J
0.01 El
» Southern |
. 0.001 El
Hemisphere
0.0001 L L L L L
(nEW!) more 10° 10° 10 10° 10° 107 108
sensitive at high Eneray (GeV)

energies due to
Earth absorption
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Data on Hand

> Detector completion in
December 2010

» Data from 2008-2010
analyzed

» 2010-2012 available
soon
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t + 30 seconds

Mon Oct 26 08:12:00° 2009

30
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++30-seconds Not a Neutrino

Mon Oct 26 08:12:00° 2009

But a near
miss — this
event
triggered
the IceTop
surface
array and is
part of a
cosmic ray
air shower.
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|C40+1C59 Limit
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Time-dependent Limits

Muon Neutrino Events

25

20

1C40+IC59 Model Independent Results

90% Upper Limit
90% Sensitivity ——— 16
Guetta et al. Prediction
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Model-dependent results

Magnetic Confinement (e.g. Ahlers et al. 2011)
Default params excluded at 120 (factor of 20).
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Model-dependent results

Magnetic Confinement (e.g. Ahlers et al. 2011)
Default params excluded at 120 (factor of 20).

Waxman-Bahcall
For Waxman-Bahcall, weaken these limits by a factor of 3.2 (=~ 10

with new figures from Waxman), which is still excluded at
>7(3)o.
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Model-dependent results

Magnetic Confinement (e.g. Ahlers et al. 2011)
Default params excluded at 120 (factor of 20).

Waxman-Bahcall

For Waxman-Bahcall, weaken these limits by a factor of 3.2 (=~ 10
with new figures from Waxman), which is still excluded at
>7(3)o.

Guetta et al.
Similar high-gamma/low-proton fraction scenario with Guetta
(I > 500). Default parameters excluded at > 30.
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Allowed Parameters

E? D, (GeV em?Zstsrl
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Waxman (2003)

Rachen et al. (1998)
Ahlers et al. (2011)
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Accomodating the limits

What things need to change in the predictions?

» GRBs not responsible for entire extragalatic CR flux?
(normalization)
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Accomodating the limits

What things need to change in the predictions?

» GRBs not responsible for entire extragalatic CR flux?
(normalization)

» GRB neutrino flux moves to high energies (threshold/I)
» GRB proton flux moves to high energies (ankle models)

» Other physics in the predictions?
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Accomodating the limits

What things need to change in the predictions?

» GRBs not responsible for entire extragalatic CR flux?
(normalization)

v

GRB neutrino flux moves to high energies (threshold/I")

v

GRB proton flux moves to high energies (ankle models)

v

Other physics in the predictions?
Global GRB rate

v

42 /47



optical
SN/GRB
detection

network of optic
telescopes
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Neutrino Production

Pty = mAp /\
— y+v +p TeV Gammas
— 7"+ n /\ Cosmic Rays?

= ut+ % TeV Neutrinos

—et+ vpt+ve +v,+n
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Note on magnetic confinement models
Magnetic confinement models directly link neutrinos and cosmic
rays — very few degrees of freedom. All changes to the neutrino
flux reflected in cosmic rays. Need (I') > 1000 for this to still work.

108 | i Allowed GRB Proton Flux (I" > 1000) =& |
99% C.L. with &, < @, 059 HiRes rai

Auger e+

SFR evolution
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Outlook

» [C79/1C86-I data
collection
complete — results
soon

» GRB analyses still
exposure-limited —
sensitivity o t

> New programs
(semi-realtime
analysis) likely
coming soon

> Neutrinos
hopefully on the
way
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