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The Problem

Limited number of
possibilities to
accelerate the highest
energy cosmic rays

Which one is right?
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The Solution?

I GRB Energy
output: 1052 ergs
in ≈ 1 second

I Similar to the
energy density in
ultra-high-energy
cosmic rays

I Unknown
progenitors

I Detected almost
every day

NASA/Swift
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Mysteries

I Are GRBs the source of high energy cosmic rays?

I What causes GRBs?

I How and where are particles accelerated?
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Testing the Theory
Gamma rays:

I Ambiguous

Protons:

I GZK horizon (50
Mpc)

I Follow curved
paths

I Time dispersal

Neutrinos:

I Trace cosmic ray
production

I Propagate freely –
no GZK cutoff

I Follow straight
paths

I ... hard to detect
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IceCube
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Neutrino Telescopes

I Cherenkov light
emitted by
charged
secondaries in
neutrino
interactions

I Light imaged by
enormous arrays of
photomultipliers

I Deep underground
for background
suppression

I South Pole ice
supplies a ready
built detector!
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Digital Optical Modules

I 25 cm
photomultiplier

I All-digitial
readout: In-Situ
Digitization

I Built-in calibration
instruments
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Construction

2.5 km boreholes using hot water
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IceCube

I 5160 PMTs

I 1 km3 volume

I 86 strings

I 17 m PMT-PMT
spacing per string

I 120 m string
spacing

I Angular resolution
∼ 1o

I Completed
December 2010!
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IceCube Lab

Deep Core
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Challenges

I Naturally
occurring media
→ no spec sheet

I No known
neutrino sources
→ no standard
candle

I Electronics buried
forever in the ice
→ no repairs

I Energies above the
reach of
accelerators →
physics unknown
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Neutrino Interactions

Muon Neutrino CC

Neutral Current or Electron Neutrino

Tau Neutrino CC (simulation)
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Physics Reach of IceCube

I Neutrino Point Source
(AGN, GRBs)

I Measurement of
Atmospheric Neutrino
Spectrum (100k
events/year)

I Indirect Dark Matter
Searches

I Measurement of θ23
I Direct Observation of ντ
I Cross-sections at

ultra-high energies

I Cosmic Ray Measurements
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IceCube Transient Analysis Programs

I Offline full-sky flare searches Bright neutrino flares on
timescales of ∼ days (needs ∼ 10 events)

I Offline GRB searches Coincidence between satellite-triggered
GRBs and neutrinos (needs ∼ 1 event, this talk)

I Online Optical Followup Triggers optical telescopes
(ROTSE) on interesting neutrino candidates (coincident pairs)

I Online X-Ray/Gamma Followup Triggers SWIFT, MAGIC,
and VERITAS on interesting neutrino candidates (coincident
pairs)

18 / 47



Satellite Detection

I FERMI GBM (2008-)
I Wide Acceptance, Low Angular Resolution

I SWIFT (2004-)
I Narrower Acceptance, Repointing, High Resolution

I Interplanetary Network
I Array of spacecraft around the Solar System
I Low trigger efficiency
I Strange point spread function

In all, ≈ 300 events per year collected by GCN network used in
IceCube analysis.
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Neutrinos from Cosmic Rays

Usual Model:

I GRBs responsible for
entire extragalatic CR
flux

I GRB proton flux
dominant at the ankle
(∼ 1018 eV)

I 500-1000 bursts per
year total

I Neutrinos produced in
pγ interactions in
expanding fireball

S. Swordy, U. Chicago
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Neutrino Production

p + γ → π0 + p

↪→ γ + γ + p TeV Gammas

→ π+ + n Cosmic Rays?

↪→ µ+ + νµ + n TeV Neutrinos

↪→ e+ + νµ̄ + νe + νµ + n

This implies a neutrino spectrum with E ' 100 TeV (set by bulk
Lorentz factor Γ)
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Model Flavors

I Waxman-Bahcall All extragalactic cosmic rays from GRBs.
Protons diffuse out of shocks at high energies.

I Magnetic Confinement Models All extragalactic cosmic
rays from GRBs. Protons trapped by magnetic fields – escape
as neutrons (Rachen et al. 1998, Ahlers et al. 2011).

I Non-Cosmic Ray Models Fixed fraction of GRB energies in
protons, which do not necessarily escape (Guetta et al. 2004,
Hümmer et al. 2012).
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Hümmer et al. 2012).

24 / 47



Searching for Neutrinos from GRBs

Signal:

I Neutrino events
with source at
the GRB position

I Neutrino events
coincident in
time with GRBs

Background:

I Misreconstructed
cosmic ray
muons

I Atmospheric
neutrinos (10−7

s−1 deg−2)
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Analysis Details

Model-Dependent Analysis:

I Search for neutrinos
with per-burst spectra
from γ observations

I Live during window of
maximum gamma
emission (T90 ≈ 30 s)

Model-Independent
Analysis:

I Search for neutrinos at
all triggering energies

I Expanding time
window from ±10 s to
±1 day
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Backgrounds
Atmospheric neutrinos controlled by space/time coincidence.
These are more of a problem:
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Sensitivity

I Optical
telescope-sized
effective area in
region of interest
(∼ 100 TeV)

I Northern
Hemisphere can
filter out cosmic
rays

I Southern
Hemisphere
(new!) more
sensitive at high
energies due to
Earth absorption
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Data on Hand

I Detector completion in
December 2010

I Data from 2008-2010
analyzed

I 2010-2012 available
soon
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t + 30 seconds
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t + 30 seconds Not a Neutrino

But a near
miss – this
event
triggered
the IceTop
surface
array and is
part of a
cosmic ray
air shower.
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IC40+IC59 Limit
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Time-dependent Limits
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Model-dependent results

Magnetic Confinement (e.g. Ahlers et al. 2011)

Default params excluded at 12σ (factor of 20).

Waxman-Bahcall
For Waxman-Bahcall, weaken these limits by a factor of 3.2 (≈ 10
with new figures from Waxman), which is still excluded at
> 7(3)σ.

Guetta et al.
Similar high-gamma/low-proton fraction scenario with Guetta
(Γ > 500). Default parameters excluded at > 3σ.
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Allowed Parameters
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Accomodating the limits

What things need to change in the predictions?

I GRBs not responsible for entire extragalatic CR flux?
(normalization)

I GRB neutrino flux moves to high energies (threshold/Γ)

I GRB proton flux moves to high energies (ankle models)

I Other physics in the predictions?

I Global GRB rate
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                      Marek Kowalski   /   Neutrino Astronomy with IceCube and Beyond    /   Sacley  30.1.2012IceCube

IceCube Neutrino-Trigger

day 0

day 1-10

network of optical
telescopes 

optical 
SN/GRB
detection

Optical Neutrino
Follow-up
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Neutrino Production

p + γ → π0 + p

↪→ γ + γ + p TeV Gammas

→ π+ + n Cosmic Rays?

↪→ µ+ + νµ + n TeV Neutrinos

↪→ e+ + νµ̄ + νe + νµ + n
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Note on magnetic confinement models
Magnetic confinement models directly link neutrinos and cosmic
rays – very few degrees of freedom. All changes to the neutrino
flux reflected in cosmic rays. Need 〈Γ〉 > 1000 for this to still work.
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Outlook

I IC79/IC86-I data
collection
complete – results
soon

I GRB analyses still
exposure-limited –
sensitivity ∝ t

I New programs
(semi-realtime
analysis) likely
coming soon

I Neutrinos
hopefully on the
way
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