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Overview on all-sky searches

~ This talk presents the results from the all-sky burst search on the
latest LIGO-Virgo runs (S5-VSR1 and S6-VSR2/3)[1,2,3,4]

~ Qverall sensitivity is comparable between the 2 data sets

“ All-sky (all-time) burst search = no assumptions on incoming
direction and time of arrival; minimal assumptions on the signal
waveform => robust “all-purpose” untriggered search for fast
transients

¥ Search for transients of duration <1 s over the frequency band
64-5000 Hz

~ Search pipeline: cWB [5], a coherent algorithm based on
constrained network likelihood

% No candidate events
~ Upper limits on the rate of GW bursts by combining all searches
on the 1G LIGO-Virgo detectors
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Observational time

H1H2L1V1 H1H2L1 H1H2 TOT [days]
S5-VSR1 68 284 104 429
H1L1V1 H1LA1 H1V1 L1VA1 TOT [days]
S6-VSR2/3 52 85 41 29 207

~ S5(Nov. 2005 — Oct. 2007) + VSR1(May 2007 — Oct. 2007)

~ S6(Jul. 2009 — Oct. 2010) + VSR2( Jul. 2009 — Jan. 2010)+
VSR3(Aug. 2010 — Oct. 2010)

“ 4 ifos in S5-VSR1 (H1, H2, L1 and V1) => 3 ifos in S6-VSR2/3
% H2 decommissioned

“ Roughly 2 years of accumulated observational time (after some
data quality + omitting network configurations with negligible live
time)




Network Sensitivity
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Detection Efficiency

SG RD | 1 WNB

| | il -+

E“. | | [ I I |
» Use ad-hoc waveforms (Sine- 1 ; 3
GaUSSian, GaUSSian, RingDownS, .............. ND —s— 100100 100
White-Noise-Bursts etc.) as well as%’" """"""""""""""""" T
“physical waveforms” (EOBNR[6],5 Y/F
numerical relativity BBH[7], CCSN, 3 —— 1000 1000 10
etc') E Sl bid v 20001000 10
» Assume different source 0 S mun
populations: random direction and @ _ BRI AV DR 3500100 100
polarization on a sphere, uniform 01k i b
distribution in volume (up to ~600 : o bt 1L e
Mpc), blue-luminosity galaxy 107% 10 10

hrss, [strain\ Hz]

catalog distribution (up to 50 Mpc)
[8], galactic distribution =>
detection sensitivity

F. Salemi, GWPAW?2012 - Hannover
Thursday June 7, 2012




Distance Ranges: a zeroth-order estimate (1)

Ranges for ad-hoc

waveforms 10° F -
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« weak dependance on the actual waveform/polarization
e strong dependance on frequency
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Distance Ranges: a zeroth-order estimate (2)

In case of BBH 10° E |
. a Linear Q=9
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Fixing a range and calculating the E_, (e.9. @ 235 Hz)
@10 kpc => 3e-8 M c* ﬂ For CCSN we need advanced detectors to see beyond our
€

Galaxy
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Combined upper limit on rate at the Earth

90% confidence upper limits for selected linearly polarized
SineGaussians by combining results from S5/VSR1 all-sky paper
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Combined Rate density Upper limit

The results is also interpreted as limits on the rate density of
GW bursts (number per year and per Mpc® ) assuming a
standard-candle source emitting 1 M_|
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The S6-VSR2/3 blind injection
(so called “Big dog”)
IN a burst perspective
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Case Study: blind injection

strong candidate Sept 16, 2010, 06:42 UTC
GW100916

* First detected and reconstructed with a latency of a few minutes by a coherent
pipeline searching un-modeled bursts: SNR in (H1,L1,V1)=(14,10,3.7)

*  Low latency checking procedures confirmed the interest in the signal:
* chirping in frequency as expected from compact binary inspiral
* louder than most noise transient events (FAR=2/yr )
* detectors were operating smoothly
Spectrograms of whitened strain output'

hannel 1 at 968654557.900 with Q of 22.6 hannel 1 at 968654557.900 wi-h & f 2.° hannel 1 at 968654557.900 with Q of 22.6
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Total SNR in the network 17 (both un-modeled and template searches)

* information was released to partner astronomers for follow-up observations within
45 minutes




Case Study: blind injection
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Sky maps: the role of Virgo

Likelihood sky maps:

® During this time
the Virgo sensitivity
was lower than
LIGO's + antenna
pattern is
unfavorable for
detection: low SNR
on V1

theta, deg.

theta, deg.

* Virgo contribution
Into reconstruction:
rules out a
significant fraction
of the L1H1 ring
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Celestial Sky map for EM follow-up

Sky map of the reconstructed source location

Wide spots distributed on
the ring of 7ms time delay
between H1 and L1
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SkyMapper

Telescope shots were requested on the
main spot, to cover nearby galaxies
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Summary and references

N

N

Results in terms of distance ranges, ULs on the rate GW
purst vs amplitude and rate density vs frequency have been
oresented for 1G GW networks: those limits are the most
stringent to date

The presented case study on the S6-VSR2/3 blind injection
shows capabilities of the online all-sky burst search for the
multi-messenger observations with the EM instruments.
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